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Abstract— Buildings are one of the primary energy con-
sumers in any city’s energy use [12]. Presence and absence
of humans is a major contributing factor to the energy use
in a building. In this paper, we present an approach to
generating a realistic model of human building occupancy
throughout a typical work week. We use the Toolbox for
Urban Mobility Systems (TUMS) to generate a synthetic
population based on population distribution estimates, we
schedule the population’s daily commute based on National
Household Travel Survey (NHTS) survey data, and we
simulate their daily travel patterns using an agent-based
transportation simulation (TRANSIMS). We process and
fuse the simulation output to produce a list of the first and
last seen location of each agent in the simulation. Based
on the arrival at the last destination, we map each agent
to one of the nearby buildings. Using these agent arrivals,
as well as NHTS data, we create an customized hourly
occupancy schedule for each building, which replaces the
typical generic occupancy schedule that is usually used
for building models [23]. We successfully demonstrate this
workflow at the example of the Chicago Loop, a major
business district in Chicago, Illinois.
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I. INTRODUCTION

Urban environments are complex systems in which social
factors, mobility, building energy, and urban climate interact
with each other. The interactions between buildings and urban
microclimate are driven by physical processes for which
there are existing models. However, modeling the interaction
between cities and people has largely depended on general
assumptions about transportation mode choices and building
use. Transportation and building energy are two of the top
consumers of energy use in the United States. Transportation
accounts for 29% of energy use, whereas buildings account for
38-40% of energy use (combined residential and commercial)
[1], [12]. There are many factors that influence energy use
in any particular building, including climate, building shape,
building materials, and number of occupants. In this paper, we
introduce an agent-based model (ABM) approach to modeling
the population’s behavior and decision-making, and obtain
a more accurate representation of energy use in buildings.
We generate a realistic model of human building occupancy
throughout a typical work day. The model is based on the
population’s daily commute patterns, using a transportation
simulation that is tailored to average measured traffic volumes
in the area. Several hundred thousand vehicle occupants are
then assigned to tens of thousands of buildings, to generate
building occupancy schedules.

Energy use in an urban environment is tightly linked with
human mobility. The purpose of this work is to create a
workflow to create a realistic building energy model based
on a data-driven model of mobility for a population in an
urban scenario. Traditionally, occupancy is represented by a
generic, piecewise linear curve (seen in Figure 8), which does
not account for differences between buildings or individual
people’s schedules [23].

In this paper, we present a workflow for a data-driven
coupling from daily commute to building energy. We



Fig. 1: In an urban environment, there are several major com-
ponents that are interdependent: population, transportation,
and buildings.

1) create a realistic commute scenario based on population
models and observed travel patterns,

2) compute agent arrival and departure schedules for a
typical work week from simulated vehicle traces, and

3) produce a building occupancy schedule for each building
and simulate building energy use.

II. RELATED WORK

A. Transportation

ABMs have been used for a variety of urban mobility
applications. Many of such models have been used to model
evacuation times and path choices [9], [13], however, some
have been used for migration analysis between rural and
urban areas [30], or commute patterns of school children
based on demographic data [7]. Some works feed into these
migration analysis works, such as an approach to assess-
ing population dynamics at high temporal resolution based
on LandScanUSA [27], [31] population distribution data by
Bhaduri et al. [6]. They consider two approaches to refining
the temporal resolution: occupancy curves by business type to
enhance daytime and nighttime population distributions, and
integrating LandScanUSA as initialization for transportation
modeling. Others, like Xue et al. [34], build their work on
top of ABMs to evaluate children’s exposure to air pollutants
on their commute to school, or use ABMs to model urban
residential choice [17].

There are a wide variety of ABM transportation mod-
els, which each have their unique advantages and disadvan-
tages [28]. The TRansportation ANalysis SIMulation System
(TRANSIMS) [32], [33] is a well-established open source
ABM transportation model that has been used to model larger
regions such as Dallas [3] and Maryland [14]. It can work
at macroscopic, mesoscopic, and microscopic levels. For the
purpose of this paper, we need microsimulation. Required
inputs include Origin and Destination Matrices (O/D Matrices)

which determine origins and destinations for each trip, a road
network, and a trip schedule. While TRANSIMS is by far
not the only traffic simulation available, it is open source,
it supports microsimulation, which is required to get vehicle
traces, and there is a tool to generate vehicle trips. The
Toolset for Urban Mobility Simulations (TUMS) [5] unifies
transportation simulation and population models into a single
tool. It consists of three components: data processing, traffic
simulation models (TRANSIMS and MITSIM), and web-
based visualization. It integrates Open Street Map (OSM),
LandScan population distributions, and other open data into
a single tool to generate evacuation and commute scenarios. It
has been demonstrated for the city of Cleveland, Tennessee.

B. Building Energy

Building energy simulations have been an important topic
for the past 50 years, and there are vast differences be-
tween different simulations’ capabilities to model complex
building geometries, HVAC, human thermal comfort, solar
analysis (effect on solar radiation on building climate and
lighting), insulation analysis, advanced fenestration, and more
[10]. EnergyPlus [11], [22], is one of the most complete
[10] whole building hourly simulation programs. It provides
energy analysis and thermal load simulation program based
on heat balance-based solutions. A number of previous works
have used building occupancy information to simulate running
utilities such as HVAC on flexible schedules dependent on
building occupancy instead of fixed schedules. These works
use sensors to provide real-time occupancy information to the
simulation [2], [15] or statistical modeling for human tasks
throughout the day [26]. The simulated results indicate poten-
tial energy savings from 10-15% [2], [15] through occupancy-
driven building control.

III. METHODOLOGY

A realistic model for urban energy use has to consider
the interconnection between population, transportation, and
buildings (see Figure 1). Each individual in a population
has a variety of trips they make to move between all the
activities they have planned for a given day. Our example
person (Figure 2) begins their typical day at home, walks their
child to the school bus, and then takes the car to commute
to work. They might walk somewhere for lunch, and at the
end of the work day, they stop at the gym and the grocery
store on their way home. At any given point in time, this
person will have an impact on energy use. Driving a vehicle
consumes energy, and depending on weather, heating or air
conditioning may be required to keep the car at a pleasant
temperature. The person’s presence or absence from buildings
also impacts energy use. In the workplace, a person requires
a computer or other equipment. While at home, they may
use large appliances, watch television, shower, etc. In either
place, people require lighting, as well as a comfortable room
temperature. Lighting accounts for almost 25% of commercial
building energy use and 11.6% of residential energy use [12].
Heating and cooling account for almost 25% of commercial



A typical day

Fig. 2: A typical day in the life of an individual includes
a variety of trips to move between the different activities
throughout any given day.

and almost 40% of residential energy use [12]. These can be
adjusted based on outdoor temperatures, time of day, and –for
more efficient energy use– building occupancy.

In this paper, we will focus on building occupancy in office
buildings based on a synthetic population’s daily commute.
For the purpose of building occupancy, we focus this work on
the Chicago Loop area, a large business district in Chicago,
Illinois.

A. Workflow

Figure 3 presents an overview of the workflow presented
in this paper. The workflow begins with the initialization,
execution, and postprocessing of TRANSIMS to produce
vehicle traces with coordinates for each time step a vehicle
is in the system (Section IV). TRANSIMS is initialized with
vehicle trips that are generated by TUMS based on Land-
Scan population distribution data (Section III-C1), and a trip
schedule that is based on commute times that are derived from
travel surveys (Section III-C3). It is then executed for an entire
work week. The output of the simulation includes a snapshot
of vehicle (or agent) locations with respect to road network
links (sections of roads with identical numbers of lanes, speed
limit, etc) for every given time step. In a post-processing step,
the agent locations are fused from TRANSIMS output and
OSM road network geometries.

In the next set of steps of the workflow (Section V), we
determine each agent’s exact first and last seen locations as
one can reasonably assume that individuals will park their
vehicles in the vicinity of buildings they live or work in. Before
determining the mapping of individuals to buildings, we first
simplify the building models by flattening the file structure,
and then augment relevant information such as overall building
area. Then, we map agents to the nearby buildings based on
their last seen locations. This feeds into agent arrival schedules
for each individual building. To determine agent departures,
we utilize commute times that are derived from travel surveys

(Section III-C3) directly as time in traffic does not directly
affect departure times. From the agent arrival and departure
schedules, we can derive a building occupancy schedule for
each building. Finally, this occupancy schedule, along with
the building geometries (Section III-C2) are used as inputs to
EnergyPlus. The resulting outputs then give information about
each buildings energy use by type of end use, type of energy
source, floor, and other criteria.

B. Area of Interest: Chicago Loop

For the purpose of this paper, we focus on the Chicago
Loop, which holds a large portion of the central business
district of Chicago. The central business district houses a large
population and is site to hundreds of thousands of jobs [16]. It
is also a fast-growing area for high-rise buildings [18], which
makes it an interesting study area for building energy use.
Figure 4 shows a rendering of the Chicago Loop buildings for
which all required information required for building energy
modeling is available. However, for benchmarking purposes,
we extend the evaluated region to a larger area of about
200 square kilometers, for which we have just the build-
ing footprints without energy-relevant metadata. The Chicago
Loop area includes 343 buildings, whereas the larger area
includes 86,093 buildings. As we are interested in commute,
we consider a typical work week for our simulation.

C. Data Sources

For this coupling, we are incorporating a range of different
data sources. Some of these data are observational or commu-
nity standard, other are simulated using different simulations,
and finally some are created as part of this work. While the
second and third type is discussed at greater detail in the later
sections, we would like to provide some background on the
first type (observational or community standard data).

1) Population Distribution: The workflow begins by gener-
ating trips for a synthetic population. The basis for this gener-
ation is the LandScanUSA dataset [27], [31], which provides
daytime and nighttime population distributions. It is a well-
respected standard in the population modeling community. In
the United States, the dataset has a resolution of 90 meters,
which is much higher than the global LandScan dataset which
has a resolution of about 1 kilometer, and only represents
ambient population distribution averaged over 24 hours.

2) Building Geometries: The building geometries used in
this work are informed by LiDAR and provided as propri-
etary ESRI shapefiles. They were converted to GeoJSON
for easier processing with standard libraries. We use two
separate building geometry datasets which are displayed in
Figure 4a: The first one encompasses the entire City of
Chicago, which contains 820,598 buildings. From this dataset,
we have derived a smaller dataset of 86,093 buildings which
fall within the traffic simulation area which covers about 200
square kilometers. The second dataset covers only the Chicago
Loop, which contains 343 buildings. This dataset contains
additional properties for the buildings which are required to
run EnergyPlus, the building energy simulation.
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Fig. 3: Overall workflow for the mobility-driven approach to modeling building energy. The workflow includes measured data
(green boxes), simulated data (yellow boxes), and derived data (blue boxes). The different data products are used as inputs for
simulations (pale yellow ellipses) and tied together by data transformation and algorithmic tasks (teal ellipses).

(a) View of the entire Chicago area. (b) Close-up of the Chicago Loop. (c) 3D rendering of the Chicago Loop.

Fig. 4: Building geometries used in this paper: Chicago Loop buildings (blue), buildings within the traffic simulation area
(yellow), and buildings for the whole Chicago area (red).

3) Commute Times: To accurately model commute times,
we need to know at what time the population departs for work,
and at the end of the day, departs from work. One possible
data source are the average traffic volumes provided by the
Illinois Department of Transportation (IDOT) [24]. These
traffic volumes provide hourly schedules for different week-
days for all daily traffic. However, since we are specifically
interested in energy use in Chicago’s business district, which
are largely dependent on commute. The National Household
Travel Survey (NHTS) [20] is a valuable source of information
for trip purposes. The NHTS provides national-level statistics
on personal travel in the United States. It includes detailed
information on households, people, vehicles, travel mode (e.g.
car, bus, walk, bike), trip purpose (e.g. home, work, school).
While for much of the United States, the published data is
aggregated to regional level, large metropolitan areas, such as
Chicago, are treated separately. From an overall of 923,572

responses in the 2017 dataset [21], we were able to filter out
6,955 responses for the City of Chicago.

IV. TRANSPORTATION MODEL

We use TRANSIMS, an agent-based transportation model
to simulate a realistic commute scenario. In order to create
the required urban mobility scenario, we employ a mixture of
simulation and data fusion techniques to initialize TRANSIMS
with the required inputs, beginning with the synthetic popu-
lation. Next, we tune the transportation model to adapt the
number of agents (vehicles) in the system to observed travel
patterns (Section III-C3). Once the model is run, we process it
to create agent arrival and departure schedules (Section V-A).
For the purpose of this paper, we focus on passenger vehicles
for daily commute in Chicago, which account for the majority
of commuters in Chicago [8]: 57.1% in Chicago, 69.8% in
Cook County, and 85.6% nation-wide in 2017.



A. Generating Realistic Trips
We create a synthetic population using the TUMS [4], an es-

tablished tool chain for population modeling. TUMS integrates
OSM, LandScan [27], [31], as well as other open data (such as
Census data), with the TRANSIMS and MIcroscopic Traffic
SIMulator (MITSIM) traffic simulation engines. As such, it
provides a basic traffic simulation that is informed by daytime
and nighttime population distributions.

We feed the traffic volumes, and the OSM road network into
TRANSIMS. TRANSIMS takes a matrix of origin/destination
pairs, and finds the best route for each of these trips with
respect to other traffic. However, these origin/destination pairs
alone do not suffice: the simulator also needs a schedule to
determine at which times it will send off each vehicle.

1) Initialization with Hourly Schedules: One area in which
TUMS falls short is temporally distributing individual trips
across the simulation time frame based on departure times. As
a first step to tuning TRANSIMS to real-world volumes, we
provide such a schedule for each day of the week, based on the
average hourly traffic volumes for each work day. As TUMS
forces a choice between morning and evening commute, we
generate two scenarios for each work day. The first scenario
uses the commute-to-work setup and the second scenario uses
the commute-from-work setup. To achieve a realistic distri-
bution, we obtained 2017 NHTS [21] data (Section III-C3),
which provides nation-wide travel survey information. To
generate a trip departure schedule for TRANSIMS, we execute
the following steps:

1) Filter the dataset for responses from City of Chicago
(6955 responses).

2) Filter for all responses indicating the trip purpose was
commute:

• ”travel to work” (791 responses)
• ”travel from work” (799 responses)

3) Normalize relative traffic volume with respect to total
daily volume by hour of day as TRANSIMS requires
all relative traffic volumes to proportionally add up to
100%.

4) Write out in TRANSIMS trip schedule file format.
Figure 5 visualizes the responses for departure times to

travel to work or from work, prior to normalization.

(a) (b)

Fig. 5: NHTS responses for Chicago area trip departure times
from home to work (left) or work to home (right) [21]
aggregated to hourly intervals.
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Fig. 6: TRANSIMS runtimes for different output step sizes
from hourly outputs to 2 second outputs.

B. Running the TRANSIMS Simulation

We simulate traffic for commute to work and from work
for each work day, using the observed travel patterns and
origin/destination pairs. The simulation runs at a granularity
of 0.1 seconds, however, such a high resolution is neither
necessary nor reasonable for the purpose of this study. The
parameter to adjust the write step size can be changed in the
simulator configuration. For a given step size, e.g. 1 hour,
the simulator pauses its compute at each step to write out a
snapshot all agents that are in the system at that given time.
Therefore, the step size affects not only write frequency but
also write volume. At a coarser resolution, a lot of agents that
are on shorter trips, are missed. For instance, if an agent were
to leave at 8:01 a.m. and arrive at 8:59 a.m., it would neither
appear in the simulation snapshot for 8:00 a.m. nor in the one
for 9:00 a.m. – this is an important consideration for the choice
of step size as we do not want to lose any data.

We ran some benchmarks on a simulation with about
285,000 agents to determine the best output step size. As
Figure 6 demonstrates, we found that TRANSIMS is compute
bound up to a step size of 15 minutes. At smaller output steps,
the main limiting factor in simulation speed is writing to disk
– the simulation is input/output (I/O) bound. At 30 second
outputs, the I/O overhead already hits 11%, and at 5 second
outputs, it is at almost 70% extra compute time.

We choose a write frequency of 30 seconds. This implies
the assumption that the last 30 seconds (or less) of any
trip are spent within reasonably close proximity to the final
destination. The compute overhead for 30 second outputs is
acceptable, which makes this choice a reasonable compromise
between accuracy and computational demands.

C. Fusing Coordinates to Agent Locations

The snapshot files from the previous step contain, among
other information, agent ID, timestamp, link ID, direction on
link, and position on link for each agent at each time step it is
active. It lacks coordinates for the actual agent location. The
OSM road network file contains a collection of links – sections



of road (line strings) which share the same properties – for
which it provides link ID, main direction (0 or 1), coordinates
for the link (one or more line segments), and other parameters.
By fusing the two sources, we are able to append coordinates
to the snapshot files.

1) Flatten the road network file to tabular format (coordi-
nates are maintained as a linestring).

2) Compute overall arc length of each link and append it
to the table.

3) For each agent location:
a) Identify link and, if the agent is traveling in oppo-

site link direction, reverse the order.
b) Determine which link segment the agent is travel-

ing on by comparing the relative arc length at each
node of the link to the agent’s relative position (arc
length on the link).

c) Compute coordinates for agent’s position on that
line segment.

d) Convert coordinates from latitude/longitude to Uni-
versal Transverse Mercator (UTM) as UTM is
locally cartesian and facilitates distance computa-
tions.

e) Append the agent’s coordinates to the snapshot file.

V. ASSIGNING AGENTS TO BUILDINGS

The goal of this paper is to create a building energy model
based on a realistic occupancy schedule. For the purpose
of this paper, we assume that agents travel from a specific
building near their origin location to a specific building near
their destination location, and that they spend the majority of
their time between their arrival and their subsequent departure
inside this building. In this Section, we present the different
steps required to create EnergyPlus input data from given
TRANSIMS output.

A. Compute First and Last Seen Agent Locations

For building occupancy, the most relevant part of the simu-
lation output are the departure and arrival times and locations
for all vehicles. Therefore, we want to produce agent arrival
and departure schedules as a more compact representation of
the simulation output. At a write resolution of 30 seconds
and a simulation area of 35 square kilometers, a typical
simulation day snapshot has about 25 million lines of agent
movement data. Processing such large amounts of information
sequentially is rather slow. Therefore, we apply a divide-
and-conquer approach that splits up the data into chunks (as
outlined below), and processes the chunks in parallel.

1) We read in chunks of the file separately. For each chunk,
we determine the first and last seen time and location
for every agent in the chunk.

2) Then we recursively merge adjacent chunks and update
the arrival information for every agent as needed, until
we have one cohesive list for the entire day.

The chunk size should be chosen such that it is larger than
the maximum number of agents in the system at any given

time, but substantially smaller than the total number of lines.
For a snapshot size of 25 million lines, we found that a chunk
size of 500,000 worked well.

B. Pre-Processing Buildings

The provided buildings files are in a complex JSON data
structure. To facilitate faster processing, we simplify the
buildings files by flattening them into a tabular format that
only contains

• building ID: unique identifier for each building
• total area in square meters: this property is provided for

some but not all building geometries. Where unavailable,
we approximated the total area as

footprint area · avg height
2.5

to approximate the relationship between total area, foot-
print area, and average height for the buildings which
included total area in their properties.

• primitive geometry: We reduce the building to its bound-
ing box and centroid as this is a sufficiently accurate
approximation for the vast majority of buildings in the
simulated area, and because it facilitates faster process-
ing.

Through this simplification, we observed that while tools
such as QGIS [25] provide an inaccurate building count: com-
plex building geometries are represented by multi polygons
which consist of multiple polygons, as the name implies.
While they still belong to the same building, each ob the sub
polygons is counted as a separate feature. For instance, for
the Chicago Loop geometry, QGIS cited 2575 features where
there were only 343 buildings. This was not the case for the
200 square kilometer area data and the difference was marginal
(less than 10 buildings difference) for the City of Chicago data
which have a slightly different format for building geometries.

C. Mapping Agents to Buildings

Provided the last seen location for each agent, one can
assign each agent to a nearby building. On average, we have
over 640,000 agents in a TRANSIMS simulation for a single
day of simulation within an area of 34 square kilometers
around the loop. We begin by culling agents that are not
within a reasonable distance of any Chicago Loop Buildings,
which reduces the number of agents to be considered to about
400,000. At 343 buildings in the loop, this still constitutes
over 137 million comparisons.

To address this, we employ a quadtree-based [29] approach
with flexible split criteria, given a set of agents and buildings.
The algorithm follows these steps:

1) Count agents and buildings
2) Determine midpoint of the given area
3) Check if the number of agents and the number of

buildings are greater than the split criterion
a) Yes: subdivide into four quadrant, using the mid-

point as a split point. This step can duplicate build-
ings if their corners fall into different quadrants.



This is intentional as these buildings may still
be the best choice for an agent from neighboring
quadrants.
i) For each quadrant, jump back to step 1.

b) No: Within the given quadrant, map each agent to
a building.

For split criterions, we experimented with a range from 5 to
100 buildings (or agents) per leaf quadrant. We took a sample
of 1000 buildings and 1000 agents, which would produce 1
million comparisons when executed serially. Figure 7 shows
the resulting average times to map all agents to buildings.
Unsurprisingly, smaller split criteria performed much better as
they only have to perform a fraction of the comparisons. For
this work, we have used a split criterion of 10. The Chicago
Loop has 343 buildings that are grouped in about 100 city
blocks. 10 buildings correspond to about 3 blocks surrounding
the agent location.

Fig. 7: Benchmark of mapping agents to buildings using
Euclidean Distance for differently sized split criteria.

For the purpose of this paper, we restricted ourselves to two
simple distance metrics that are based on building centroids
and total areas. Alternative mapping methods could include
polygon-based distance metrics (which we avoided in favor of
faster compute), or stochastic assignment to buildings.

1) Euclidean Distance: We compute the Euclidean Dis-
tance between each agent and each building’s centroid within
a given quadrant. The agent is assigned to the building with
the smallest distance.

2) Weighted Euclidean Distance: We compute a Weighted
Euclidean Distance using weights that are based on the build-
ing’s total area.

relative area =
total area∑

buildings total area

We use the building’s inverse relative areas as weights,
such that larger buildings will decrease the distance measure
whereas smaller buildings will increase the distance measure.
The agent is assigned to the building with the smallest
weighted distance.

D. Creating a Building Occupancy Schedule

EnergyPlus requires two inputs to define occupancy: an
building occupancy schedule for a given time interval (we use
one hour per step) which contains relative building occupancy
throughout the day, as well as the maximum occupancy for
each building.

To create this schedule, we first need the number of agents
arriving and departing the building throughout the day. Given
the agent-to-building mapping we can easily create an agent
arrival schedule for each building. We aggregate the agent
arrivals to an hourly schedule, such that we obtain an hourly
schedule of agents arriving at the building for each building.

For the agent departure schedule, we need the times of
departure before we can proceed. While we simulate the com-
mute home from work for all agents for other purposes, such as
emissions modeling, we have reliable survey information from
the NHTS [21] on the average times individuals in Chicago
usually leave work. To determine the agent departure schedule,
we apply the same transformations to the commute-from-work
data that we applied to the commute-to-work data to obtain a
schedule of relative volume throughout the day.

1) Compute the relative proportion of individuals leav-
ing their workplace during any given hour (see Sec-
tion IV-A1 step 3).

2) For each building:
a) Obtain agent arrival schedule.
b) Determine cumulative hourly arrivals throughout

the day.
c) Compute number of hourly departures for each

building based on its maximum occupancy during
the day and the hourly proportion of individuals
departing the building.

Finally, we can compute hourly building occupancy by
taking the difference of the cumulative arrival and departure
times. We then convert it to the required format for EnergyPlus
by storing the maximum occupancy for all buildings in a
separate file, and normalizing building occupancy to [0,1]
before saving it to one file per building.

The simulated occupancy is compared to the generic office
schedule in Figure 8. It is slightly faster than the generic
occupancy in the mid-morning hours, but quite similar in the
afternoon and during off-peak hours. As lunch breaks are not
represented in the transportation model, the lack of a drop
during lunch hours is expected; however a lunch hour could be
simulated if needed. Overall, the simulated schedule is a more
useful input than the generic one for the building energy model
as it is based on a statistical representation of the activity of
actual population.

E. EnergyPlus Building Energy Output

Finally, we initialize EnergyPlus [22], a building energy
simulation, with the building occupancy schedules from the
previous step. Like other whole building energy simulation
programs, users are required to define building geometry,
envelope thermal characteristics, HVAC system specification



Fig. 8: Comparison of a typical office occupancy schedule vs
the modeled occupancy schedule.

as well as operation schedules such as thermostat schedule,
occupancy schedule, lighting and plug load schedules. Once
input file is ready to be run along with a weather file, the
simulation is performed for a whole year or part of year in
hourly or sub hourly time resolution. The simulation outputs
provide the simulated energy consumption for heating, cool-
ing, ventilation, lighting and plug and process loads as well as
indoor conditions such as temperature and relative humidity.
In this study, generic occupancy density and schedules in a
building model will be replaced with the occupancy schedules
generated from transportation simulation.

Fig. 9: Average daily electricity use by end use for building 70
as simulated with EnergyPlus compared to a typical medium-
sized office building.

In the following, we present results for one of the buildings
which is located on the corner of South Franklin St and West
Adams St. The occupancy model inputs for this building was
created from the previous step, and the maximum occupancy
for the building was estimated as 3,000. According to a
prototype building model input [23], a typical office building
in this size would have around 4,600 of maximum occupancy.
Therefore, the occupancy model estimated slightly lower (i.e.,

about 35% lower) occupancy for this building. The selected
building is a typical office building installed with packaged
Direct Expansion (DX) cooling unit with electric reheating
Variable Air Volume (VAV) system. The model input values
for the building and HVAC characteristics except occupancy
input were defined per the prototype office building model
[23]. Figure 9 displays the average daily electricity use by
type of end use. Heating uses 17.7% of all electricity which
is used for VAV reheating system, and cooling uses 7.8%.
Interior lighting is third at 31.2%. The majority of electricity
use (40.3%) is consumed by interior equipment. The remaining
energy use types share the remaining 3%. We compare this
energy use to that of a typical medium-sized office building
at a similar latitude (Buffalo, New York) [23]. As seen in the
Figure 9, heating consumed slightly more energy and cooling
consumed slightly less. Interior equipment and fans consumed
about the same. The larges difference lies in interior lighting
(higher for simulated results), exterior lighting (higher for
typical building), and pumps (higher for simulated results).
Overall, the results are within the expected range.

VI. CONCLUSION AND FUTURE WORK

We have presented an end-to-end workflow for a mobility-
driven approach to modeling building energy, from transporta-
tion simulation setup to building energy output. For every step
of the workflow, we have discussed required data inputs and
outputs, and explained design choices that were made based on
domain-specific reasons. To extend this work, we will replace
the census tract TUMS inputs with finer-scale population
inputs. Moreover, we would like to create a model for full year
of travel, including non-commute travel, and include multiple
modes of transportation, based on daily traffic volumes from
IDOT and NHTS data. This provides a significant challenge
as it will require many more data sources to create such a
scenario. We would further like to explore more complex
mapping methods for the assignment of agents to buildings,
such as the ones outlined in Section V. Finally, we would
like to consider weather as an input to the transportation
simulation, as it has a profound effect on not only building
climate but also driving behavior and transportation mode
choice [19].
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