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Abstract—Deep-learners have many hyper-parameters including
learning rate, batch size, kernel size — all playing a significant role
toward estimating high quality models. Discovering useful hyper-
parameter guidelines is an active area of research, though the state
of the art generally uses a brute force, uniform grid approach or
random search for finding ideal settings. We share the preliminary
results of using an alternative approach to deep learner hyper-
parameter tuning that uses an evolutionary algorithm to improve
the accuracy of a deep-learner models used in satellite imagery
building footprint detection. We found that the kernel and batch
size hyper-parameters surprisingly differed from sizes arrived
at via a brute force uniform grid approach. These differences
suggest a novel role for evolutionary algorithms in determining
the number of convolution layers, as well as smaller batch sizes
in improving deep-learner models.

Index Terms—deep learning, convolutional neural networks,
evolutionary algorithms, hyper-parameters, optimization, settle-
ment detection, satellite imagery

I. INTRODUCTION

Fig. 1. Building footprint detection. This depicts detected building footprints,
highlighted in purple, by applying a [CNN] model to satellite imagery.

|Deep learners (DLs)| have been applied on problems in
computer vision, speech recognition, and text analysis [13]].
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At |Oak Ridge National Laboratory (ORNL)s [Geographic]|
[[nformation Science and Technology (GIST)| group, scientists
have applied toward large scale building detection and
mapping, as depicted in Fig. [T] 27].

All have hyper-parameters whose settings will influence
model quality. These include specifying kernel sizes for
convolution layers, the number of training epochs, batch sizes,
and dropout rate. Strategies for finding ideal hyper-parameters
has become an active research topic, but generally hyper-
parameters are selected using some form of manual trial and
error system, a brute-force uniform grid search, or random
search [3]]. However, one alternative to these hyper-parameter
tuning strategies is to use an [evolutionary algorithm (EA)| to
evolve optimal [DL] hyper-parameters [28].

We share here the results of a prototype system that uses
an evolutionary algorithm to tune two hyper-parameters for
a satellite image building footprint [DL] The same [DL] was
previously tuned using a brute-force, uniform grid search of
several hyper-parameters, which took two weeks on a dedicated
cluster node with 8-NVIDIA K80 GPUs [14], and which
served as a baseline for comparison with the current work.
By contrast, the [EA] approach took 12 hours on [ORNLs Titan
supercomputer. We found that the evolved kernels sizes suggest
that could be used as a diagnostic for determining the
ideal number of convolution layers in a We also found
that batch sizes were inversely correlated to model validation
accuracy, which perhaps indicates that smaller batch sizes may
yield improved validation accuracy possibly as a novel and
unique source of noise [30].

II. RELATED WORK

has provided significant advances in the areas of
computer vision, text processing, and language translation,
among others [13]. Within a remote sensing context, [DLs| have
been applied to classify satellite image regions [18]]. [DLs have
also been successfully employed to identify buildings from
satellite imagery [14].

Generally, the two most common approaches for tuning
DL] hyper-parameters are using a brute-force uniform-grid
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approach to exhaustively explore combinations of different
hyper-parameter values, or randomly sample different hyper-
parameter values [3|]. The uniform grid approach is time
consuming beyond a certain number of tuned hyper-parameters,
the sample intervals for real values may skip over interesting
regions of the search space, gives equal weight to hyper-
parameters that make little contribution to model fidelity,
and adding more hyper-parameters can exponentially increase
search times. By contrast, random search does not give equal
weight to non-contributing hyper-parameters, and are free to
encounter useful solutions that would have been skipped over
by a comparative uniform search due to regular sample value
spacing. Regardless, the random approach is not satisfactory
in that practitioners have to rely on luck to find viable hyper-
parameters; this kind of search also does not leverage learned
facets of the search space to focus on interesting areas.

An alternative to uniform grid and random search is to use
Bayesian optimization to tune hyper-parameters [23] |21]].
There is also some general guidance for tuning hyper-
parameters in [2].

solve problems via a biologically inspired approach
whereby posed solutions are represented as individuals in
artificial ecosystems, and where fitness is represented by
solution quality [7]. have been used as an alternative to
gradient descent approaches for learning network weights [[16],
and have also been used to learn weights and simple network
topologies [24]]. In addition to tuning [DL] hyper-parameters,
MENNDL used an [EA] to optimize the architecture of
layers, including determining the number, kind, and sequence
of layers up to an arbitrary fixed upper-bound [28]] using a
VGG-style [22]. Another approach that also used a fixed-
length representation allows for arbitrary connections between
layers that support not only VGG-type but also ResNet
[TO] and DenseNet [11]]

III. METHODOLOGY

The research objective was to determine the efficacy of
tuning a [DIJs hyper-parameters using an However, this
was a prototype system in that only two hyper-parameters
were selected for tuning, the kernel and batch sizes, with
the intent that if this system proved viable that the next
implementation would consider additional hyper-parameters
that includes the learning rate, number of layers, number of
neurons per layer, gradient solver, and activation functions. A
prior architecture, including hyper-parameters tuned via
a brute force uniform grid approach, provided a baseline for
comparison [[14f]. The expectation was that our approach should
provide similar hyper-parameters as found with the brute force
method, but in a more timely manner.

To that end, here we detail the software used to implement
the experiment, the architecture, the @] implementation,
as well as the data used for training and validation.

A. Base Deep-learner Architecture

We use a baseline [CNN] architecture implemented in our
previous deep learning settlement mapping task, and which

TABLE 1
[DL] OPTIMIZER PARAMETERS

optimizer  stochastic gradient descent
momentum 0.9
Nesterov momentum  true
learning rate  0.00273

decay rate 0

is depicted in Fig. 2] [14]. The four 2D convolution layers
are highlighted to emphasize that one of the tuned hyper-
parameters, the convolution kernel size, is associated with
those layers. We use [stochastic gradient descent (SGD)|to train
the model with the optimizer’s parameters set according
to Table [

The MaxPooling2D layers all used a 2 x 2 pool size. The
2D convolution and dense layers all used

Unit (RLU)| activation functions and weights are initialized
from a normal distribution. The dropout layers used rates of

0.5. The last three dense layers had sizes of 512, 256, and 2,
respectively, with the last layer using a ”softmax” activation
function for the classification output.

B. implementation

Algorithm 1 for optimizing hyper-parameters.

1: Py < GENERATE(30) > random initial population
EVAL(F,) > calculate fitnesses
140
maxgen < 4
while i < maxgen do

C; + BIRTH(F)
EVAL(C))
P; 11 + SURVIVE(P; U C}, 30)
14—1+1
end while

> create children
> evaluate children
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Algorithm |1| shows at a high-level the used to optimize
the kernel and batch size hyper-parameters. First, an
initial population of 30 individuals was generated by creating
random bit vectors for each of them. Then the individuals were
concurrently evaluated on separate Titan nodes, which entailed
returning the validation accuracy for the corresponding
built and trained with the kernel and batch sizes described
in the individual. Then for each generation created a set of
children from the current set of parents; then evaluated them
concurrently on separate Titan nodes as was done with the
initial parents; and then determined the next set of parents
from the 30 best of the current parents and children.

Algorithm [2] details the BIRTH operator invoked in line [6] of
Algorithm |1} This operator gets the current set of parents, F;,
and returns a set of children created from those parents, C,
with the number of children equal to the number of dedicated
Titan worker nodes, or 382. We chose 382 nodes because
the minimum number of nodes needed for a single job to
get a maximum of 12 hours per run as dictated by
[Leadership Computing Facility (OLCF)| policy [1]] was 383.
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Fig. 2. CNN architecture used. This depicts the architecture that was used for building detection from satellite imagery. The four 2D convoluation

layers for which the corresponding kernel sizes were evolved are highlighted.

Algorithm 2 The BIRTH operator.
1: function BIRTH(FP;)
2: C <+ {}
: n+0

3

4 maxchildren < 382 > 382 Titan worker nodes
5: while n < maxchildren do

6: P,, P, + SELECT(F;)

7 C, + CLONE(F,), Cp < CLONE(F,)

8 MUTATE(C,,), MUTATE(CY})

9

Cy, C, <+ CROSSOVER(C,, Ch)

C+~Ccuc,ucC, > append children
11: n<+<n+2 > created 2 children
12: end while
13: return C

14: end function

(I.e., 382 worker nodes plus one controller node.) 12 hours was
deemed enough time for five generations, which was enough
to get a sense of the efficacy of this approach.

Lines [5] - [12] show the details of creating offspring. First,
binary tournament selection is used to pick two parents from
P;; that is, binary tournament selection works by selecting
two individuals from P; with replacement, and the best of
the two is returned [7]. This process is done twice to select
two parents, P, and P,. These two individuals are cloned into
what will become the new children, C, and C. Then bit-flip
mutation is applied with a chance of 0.1 per bit. Then uniform
Ccrossover is applied to create the final children, C, and C},
that are then appended to C'. After 382 children are created,
C is returned.

Fig. [3] shows how the individuals in the population represent
the kernel and batch sizes to be optimized as a sequence of
19 bits. The first set of bits correspond to the kernel sizes, with
each kernel size taking three bits, thus supporting eight possible
values mapped to {3,5,7,9,11,13,15,17}. The remaining
seven bits represented the batch size. Since sensitivity tests
indicated that the Nvidia K20 [graphics processing units (GPUs)|
on Titan could only support a maximum batch size of 150,
and the seven bits had 127 unique values, the valid range of
batch sizes to be explored was in [22, 150].

Mutation for such a binary representation is implemented as
simple bit-flipping. However, it has been long known in the [EA|
community that bit flipping the most significant binary digit of

Kernel Size 0 Kernel Size 2

(o] 1/ o] of 1

Kernel Size 1 Kernel Size 3 Batch Size

+ o o o oA

w8

Grey Encoding

133-3-

Fig. 3. Problem representation. Each individual in the population represents
a unique configuration using 19 bits. The kernel sizes for the four 2D
convolution layers are represented by four sets of three bits, respectively; the
last seven bits correspond to the batch size. The integer values for the kernel
and batch sizes are remapped via Grey Encoding to mitigate the disruptive
effects of bit-flip mutation. The kernel sizes after Grey encoding are indices
to look up the actual kernel size € {3,5,7,9,11,13,15,17} - e.g., a kernel
size index value of four corresponds to a kernel size of eleven. Lastly, since
the batch sizes must map to [22,150], the Grey encoded value is subtracted
from 150. These kernel and batch sizes are then passed to Keras to build
a corresponding that is then trained to be evaluated for its validation
accuracy.

a numeric value could be very disruptive — the notion is that
evolutionary processes should generally be gently incremental,
which is at odds to such drastic mutation effects. The typical
solution, which we implemented, is to use Gray codes to remap
numeric binary sequences such that a single bit flip only nudges
the value by a small amount regardless of where the mutation
occurs 4] The resulting integer values after Gray encoding
then yields a final kernel size from (n + 1) x 2 + 1, where n
is the Gray encoded integer. (I.e., again, yielding kernel sizes
in {3,5,7,9,11,13,15,17}.) The Gray encoded value for the
batch size is subtracted from 150 to yield values in [22, 150].

For every generation each Titan worker node receives these
kernel and batch sizes that are then used to configure our [DL]
model.The resulting [DI] is trained and the validation accuracy
is returned as the corresponding individual’s fitness. However,
we do observe pathological configuration of kernel sizes that
do not fit the commonly human picked sizes, such as the kernel
sizes {17,17,17,17}, for which our model estimation process
will throw an exception. We flag these exceptions with a -1
to account for the corresponding fitness; such individuals will



quickly fall out of the population due to selection given that
this is a maximization problem

C. Dependent Software

TABLE II
DEPENDENT SOFTWARE

software  version
python  3.5.6
Keras  2.0.8
TensorFlow 1.3.1

CUDA 75

singularity ~ 2.5.2
inspyred  1.0.1
schwimmbad  0.3.0

Table [lI] shows the software used to implement our ex-
periments, but does not include an exhaustive list of the
dependencies of dependencies for the sake of brevity. We
used Keras [5] with the TensorFlow [15]] backend for our [DL]
implementation, which, in turn, used CUDA [17] to support
operations. We also relied on Singularity containers [12]
supplied by the to provide support for TensorFlow
on Titan [25]. inspyred provided a python-based
[computation (EC)| framework [9] in which we incorporated
schwimmbad [[19] to support a controller/worker configuration
for submitting to Titan nodes for evaluation with each
generation.

D. Experiments

Four panchromatic (single band) image tiles, of 0.5-meter
resolution, that cover extremely varying landscapes and settle-
ment structures from Daykundi, Afghanistan are selected. A
ground-truth collection of 20,000 image patches, each of size
144 x 144 pixels, is manually cropped from the tiles. These
are randomly sampled however are representative enough for
training a convolutional network based settlement detection
model. Model evaluation is conducted using a validation set
of 2,300 image patches.

IV. RESULTS

That 19 bits were used to represent these DLs meant that
there were 219 possible combinations, or 524,288, possible
configurations. Presuming an average training time of one
hour for a single GPU, and an Nvidia DGX-1 with eight such
GPUs, would take nearly eight years to explore every such
combination. However, for the five runs performing on the
Titan supercomputer evaluated just 7,830 Again,
presuming an average training time of one hour per that
number of models would have taken approximately 40 days
on a dedicated DGX-1 with eight GPUs. However, the original
brute-force uniform grid hyper-parameter sweep that we used
as a baseline comparison took two weeks on a cluster node
with 8-NVIDIA K80 GPUs — by comparison, all five runs
done for this work occurred within a 12 hour period.

We will next share the validation accuracy, kernel, and batch
size results for these five 12-hour runs.

A. Validation Accuracies
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Fig. 4. DL fitnesses. This shows the aggregate fitnesses for all five runs.
The intial population is random, and most of the fitnesses are around 50%.
However, very quickly the validation accuracies of the five runs asymptotically
approach 95%.

Fig. E] shows the collective fitnesses for all five runs, which
is the final validation accuracies for 30 [DL] by five runs, or
150 per generation. The first generation is comprised
of entirely random kernel and batch sizes with most of the
corresponding validation accuracies around 50%. The next
generation is comprised of the best offspring and parents,
or from the previous generation, and shows a jump in
validation accuracies, with a median validaiton accuracy of
76.22%. Over the next three generations, the five runs converged
on validation accuracies to a median value of 92.48%.

These fitness trajectories were a diagnostic that the prototype
system was behaving as expected from the perspective of
creating viable models. That is, the “best-so-far” curve of
the evolved [DL] model validation accuracy quickly converged
on the validation accuracy of 95.83% that was achieved with
similar [DI] models derived from the prior uniform grid brute
force approach [6]; if the system was not performing correctly,
then the runs would not have improved from generation to
generation, or achieved a validation accuracy close to that
of the brute force approach. Moreover, we are confident that
the runs would have converged on similar validation accuracy
if allowed to run for a few more generations based on the
observed best-so-far trajectories of the five runs.

B. Kernel Sizes

The brute force uniform grid approach determined that
a kernel size of three for all four 2D convolutional layers
was optimal [|6], and the expectation was that the would
converge on similar results. Fig. [5] shows the kernel sizes
for all five runs by generation for the For the first
three convolutional 2D layers, the readily converged on
a kernel size of three by the third generation. However, the
significantly differed from the brute force approach for the
fourth and final 2D convolutional layer by not converging on
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Fig. 5. Conv2D layer kernel sizes. This shows the aggregate kernel sizes
for each of the four 2D convolutional layers for 30 for all five runs, or
150 [DLs] per generation. For the first three 2D convolution layers all five runs
converged to a kernel size of three by the third generation, which matches
what the uniform grid brute force approach discovered. However, for the fourth
2d convolutional layer, none of the five runs converged on a single kernel size;
by contrast, the uniform grid brute force approach determined that a kernel
size of three was ideal.
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Fig. 6. Fourth Conv2D layer final kernel sizes. This is a histogram of
the final, aggregate kernel sizes for all five runs, and shows that the kernel
sizes had converged to one of four values — 7, 9, 11, or 13; which, again,
significantly differed from the kernel size of three determined to be ideal by
the uniform grid brute force approach.

a kernel size of three; in fact, the [EA] did not converge on any
single value.

Fig. 6| shows a histogram of the final fourth 2D convolutional
layer kernel sizes for all five runs, or the final, and best 150
[DLsl There we observe that the final kernel sizes fall within
one of four bins in {7,9,11, 13}. In descending order of count,
there were 52 kernel sizes of size 9, 48 of 13, 36 of 7, and 14
of 11 — none of which were anywhere near the kernel size
of three arrived at by the baseline brute force approach.

We pose one possible explanation for the differences in
kernel sizes between the [EA] and the brute force approach. That

is, these results serve as an architectural diagnostic signaling
that the fourth 2D convolutional layer is superfluous, at least
within the context of the training and validation data used.
There is also the distant possibility that the [EA]is leveraging
some larger scale structures relevant for that layer, and that
after several more generations it may converge on one of the
four kernel sizes found in the final generation. However, given
the rarity of having such large kernel sizes on convolutional
layers, and the significant distance of these kernel size values
from the brute force size of three, it is likelier that these
different sizes are the result of genetic drift, or arbitrary
convergence via sampling. That is, if the kernel size values
for the fourth 2D convolutional layer have no or little bearing
on the corresponding fitness (validation accuracy), then from
generation to generation the size of the set of kernel sizes will
monotonically decrease [20].

C. Batch Sizes
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Fig. 7. Batch sizes. This batch sizes for all five runs gradually converged
to a median value of 25, the convergence trajectory of which has an inverse
correlation to the validation accuracies, as shown in Fig. E

Fig. [7] shows the batch sizes for all five runs. The first
generation, which is comprised of random batch sizes, shows
the expected uniform spread of batch sizes in [22,150].
However, the batch sizes for all the runs gradually converged
on a median value of 25. This was surprising because the
expectation is that the batch size should have no impact on the
corresponding validation accuracy. That is, the [DL] is going
to “see” all the training and validation data with each training
epoch, so the amount of training and validation it sees at once
should not color its perspective of the problem space. Yet
the batch size trajectories are inversely correlated with the
validation accuracy trajectories as noted in Fig. ]

One possible explanation for this phenomenon is that smaller
batch sizes introduce a novel form of noise to the training data
that gives a small, but notable, boost in validation accuracy.
That is, adding noise to different aspects of training can
improve model fidelity [30]. The smaller batch sizes may
provide a rougher perspective of the training and validation



data almost as if noise had been added — think of it as a kind
of drop out layer that is added in such that each batch is not
so much giving data from which to be training, but giving data
with the rest of the data occluded.

V. CONCLUSIONS AND FUTURE WORK

Here we share our experimental results, which indicate that
the evolved kernel sizes are a potential diagnostic for
architectural configuraitons, and that smaller batch sizes may
be a novel source of helpful noise. We also share follow-on
plans for future work.

A. Kernel Sizes as Possible Diagnostic

The [EA] converged on kernel sizes for the fourth 2D
convolutional layer that significantly differed from that which
the corresponding brute force approach discovered. That is,
the latter determined that a kernel size of three was ideal,
whereas the [EA| converged on four possible kernel sizes — 7,
9, 11, or 13. This is possibly a diagnostic that the fourth 2D
convolutional layer is superfluous within the context of the
training and validation data that was used in the experiments.
That is, if the fourth layer is not needed, then there will be no
or little contribution to the individual’s fitness for the fourth
layer’s kernel size, and so any observed convergence will be
due to genetic drift.

There are two ways to test this hypothesis. First, the
experiments can be re-run after removing the fourth 2D
convolutional layer; if there are no significant differences
between the quality of these newly evolved models and the
original models, then this would support the notion that that
layer was not needed. Second, the training and validation data
for this work was for a single Afghanistan province. The
experiments can be re-run keeping the fourth layer, but for
the entire country instead of just a single province, with the
intuition that a larger training and validation dataset with more
variance may need the leverage of that fourth layer. If this is
true, then we should observe the kernel sizes converge to three,
which, again, was the same as what was noted in the baseline
brute force approach.

B. Smaller Batch Sizes as Possible Novel Source of Jitter

First, see if this phenomenon can be reproduced with other
training and validation data. If this is a general observation,
then run another experiment with one set of runs with the
maximum batch size supported by the GPU and another with
a batch size of 25, as converged to by the If there is a
significant difference between the two runs, then we know this
phenomenon is real.

Then, to determine if this behaves as a unique source of
noise, intentionally add noise or manipulate the existing dropout
layers to see if that has an impact on the evolved batch sizes.
If the batch sizes no longer converge, then we can be satisfied
that this is a viable explanation.

C. Improvements and Expanding Scope

The results shown here were from a prototype system
intended to show the viability of this approach. Given that
the system appears to evolve ideal hyper-parameter values, we
plan to include the other hyper-parameter values used with the
original brute force search to do a comparison between the
two.

The by-generation implementation of the did not make
the best use of the available GPU resources on Titan. That is,
parallel evaluation of were done in lock-step by generation;
this meant that GPU’s that finished training their respective
would be idle until the last [DL] of that generation was
done. Considering that pathological configurations, such as
sequences of kernel sizes that made no sense, would terminate
evaluation immediately, that meant that GPU could sit idle for
hours until the last [DI] completed training. Moreover, not all
take the same amount of time to train, so once again there
would be idle GPUs for those that finished their training
early.

A better approach that we intend on implementing, and one
used by MENNDL [28]], is to use an asynchronous steady-state
[EA] That is, a pool of individuals is continually updated with
new as they complete training. As soon as a node has
completed training a the newly evaluated replaces
an inferior individual in the population, and a awaiting
evaluation is then assigned to that GPU for evaluation. This
configuration ensures that no GPUs remain idle for long during
the entire run.
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