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ABSTRACT
The non-pharmaceutical intervention to reduce the impact and
spread of COVID-19 requires the development of policies and guid-
ance through a collaborative effort among government, academia,
medicine, and citizens. To operationalize this effort, we have de-
veloped an all-encompassing situational awareness platform that
can process multi-modal and multi-source data allowing informed
decision making. Besides, showing the current spread of infection,
the platform also captures the impact of human dynamics on the
infection spread, location, and availability of critical infrastructure,
prediction, and high-performance computing driven simulation.
The platform is extensible, allowing third-party integration and
services to consume the curated data and analytics in near real-time.
We believe the platform will augment critical decision making for
reducing the impact and spread of the pandemic.

CCS CONCEPTS
• Computer systems organization→ Real-time system archi-
tecture.
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1 INTRODUCTION
In January 2020, the Director-General of the World Health Orga-
nization (WHO) declared the novel coronavirus (COVID-19) out-
break a Public Health Emergency of International Concern (PHEIC),
WHO’s highest level of alarm. Since then, both pharmaceutical and
non-pharmaceutical interventions sprung to action in an attempt to
staunch the spread of infection. In the latter case, healthcare agen-
cies, volunteers, non-profit organizations, and several others have
put forward an effort of epic proportions to curate high-quality
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datasets on cases and available healthcare resources. Prediction
and simulation models are built to demonstrate the likelihood of
infection and its impact. However, to a large extent, these efforts are
isolated and focus solely on one thing; for example, Johns Hopkins
University (JHU) reports cases at the province level in China; at the
city level in the USA, Australia, and Canada; and at the country level
otherwise[7]. Policymakers need an all-encompassing view of the
situation to make an informed and rational decision for maximum
impact. This involves quick access to current situational awareness,
future prediction, and ancillary information such as the location
of critical infrastructure. Until recently, no such mechanism ex-
ists that provide everything under a single umbrella. There could
be several reasons: i) it is difficult to conflate multi-variate data
with varying spatial and temporal granularity, ii) in a continuously
evolving situation, data variables and schema also evolves, making
it impossible to converge on a stable data format, iii) the volume
and velocity of data is enormous, requiring specialized data and
compute architecture. Also, in a dynamic environment like this, the
currency of the data and analytics is paramount. Thus, Real-time
(RT) architectures capable of stream processing are vital to address
the challenge arising from the currency of data insights. Developing
scalable and operational RT architectures have a high upfront cost,
sometimes making it difficult to build and run.

The objective of this work is to develop an integrated COVID-19
pandemic monitoring, modeling, and analysis capability that will
include, - i) historical and current spatio-temporal trends of disease
spread, ii) estimates of required hospital beds, ICU units, ventila-
tors, etc., iii) needed testing capacity and where iv) quantify the
effectiveness of implemented interventions and mitigation strate-
gies. To address these challenges, we developed and operationalized
an agile, online COVID-19 platform for integrating, synthesizing,
analyzing, and visualizing geographically resolved data (collected
as part of this effort) as well as conveying modeling and simulation
results that anticipate future COVID-19 transmission dynamics.

The proposed platform is built by hybridizing the concepts of
Lambda architecture and Hyperscaling to achieve real-time analyt-
ics and visualization of spatiotemporally disparate datasets through
load-aware vertical and horizontal scaling of available infrastruc-
ture with zero downtime. Besides the architecture, the proposed
platform offers two key application-level functions:

Multisource data integration data store: A critical component of
the online platform is the ability to ingest and merge structured
and unstructured data sources curated in support of the COVID-
19 platform from multiple sources that include hospitals, regional
governments, social media, and other crowd-sourced outlets related
to COVID-19 infectious diseases spread.

Interactive analytics dashboard:A substantive system for merging
and scientifically analyzing multiple, disparate open-source data
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streams (e.g. COVID-19 cases, twitter content, quarantine maps,
demographic context, and news feeds), physical data (e.g. temper-
ature, precipitation) and modeling and simulation outcomes. The
work leverages hyperscale architecture for data curation, analysis,
and visualization of a range of curated and modeled data.

The remainder of the paper is structured as follows: section 2
modestly discusses related work and relevant background, the pro-
posed architecture is discussed in section 3, while the operational
workflow release plan is discussed in section 4. The end product
of the platform is a suite of interactive dashboards, their design
and development are discussed in section 5. Hotspot detection is
discussed in section 6 and extending the platform to connect with
third-party applications is discussed in section 7. Finally, the paper
concludes in section 8 with a discussion on stress testing.

2 BACKGROUND
Ever since the onset of the COVID-19 pandemic, countless web-
based dashboards have been developed to track the development of
COVID-19 at the local, national or global level. Most governmental
agencies (e.g., Centers for Disease Control and Prevention (CDC),
state or county health agency) use web-based dashboards to release
the latest information about COVID-19 to the public. It does not
take long for researchers and decision makers to realize the need
for a more comprehensive platform that can collect, aggregate,
visualize, and predict the dynamics of COVID-19 using various
scattered data sources.

One of the most widely referenced platforms is the web-based
dashboard from Johns Hopkins University[8], which tracks the
latest number of COVID-19 cases and deaths around the world, at
different spatial granularities for different countries. It functions
both as an authoritative COVID-19 data curator and a basic tracking
tool with visualizations from ESRI. The New York Times[25] also
developed a dashboard that offers similar functions. There are many
other web-based platforms that visualize and track different aspects
of the pandemic, e.g., the spread and evolution of different strains
of SARS-CoV-2[14], real-time symptom and public behavior sur-
vey around the world[6, 11], online conversation and information
spread[22], healthcare system capacity[2], and human mobility[9].
Most of these tools focus on a relatively narrow aspect of a large
system, and lack a predictive analysis capability. In this work, we
have developed a geospatial platform that provides real-time situa-
tional awareness, prediction, and simulation results generated by
different laboratories. More importantly, it conflates disparate data
sources to depict a story with context rather than mere statistics.

For all emergency response analytic platforms, context is a criti-
cal component of communication. As stated in [26], "Geography
and history offer unique perspectives on context through study of
the interconnectedness of phenomena, events, and places across
multiple spatial and temporal scales through which situations are
understood." For COVID-19, this means effectively communicating
information beyond case counts and deaths. Providing geographic
and historical information relating to the spread of the pandemic is
important. Furthermore, context surrounding COVID-19 extends to
supporting information like hospitalizations, where and how much
people are traveling to public/commercial spaces, school closures,
and more. To that end, the front-end visual portion of many COVID-
19 dashboards contextualize the pandemic by including map views

with multiple layers, supported by various graphs, charts, and tables
all with historical and current data, with which users can interact.

The proposed platform is built on lambda architecture[17] allow-
ing a way of processing massive quantities of data that provides
access to batch-processing and stream-processing methods with
a hybrid approach. The lambda architecture itself is composed of
3 layers: batch, serving, and stream. The platform benefits from
this approach, when combining archive data with streaming data
that the platform collects. In addition, the platform incorporates
the features of hyper-scaling architecture[4] that can benefit from
expanding both compute and storage power as required. Besides
these, there exists a plethora of architectures such as kappa[18],
derived from lambda architecture and less complex to deploy in
real-world, Apache Hadoop[15], Apache Spark[27], among others.
There are more architectures, we keep the details limited, and for
more information review[21, 24].

Besides high-availability, another important measure of success
for any scalable architecture is its ability to maintain low latency
during I/O intensive operations. Distributed Caching Mechanisms
(DCM) that stores large amounts of data in the memory of more
than one machine offers to bridge the gap and improves the latency.
Information-centric networking[28] is one of the best examples
of a distributed cache implementation that focuses on location-
independent content sharing across the planet. There are four types
of DCMs, that includes cache aside, read-through cache, write-
through cache and write-back. These approaches are application
and scenario dependent on maximizing the application throughput.
Open source implementation of DCMs are widely available, such as
Hazelcast, Memcache, and Redis, among others[23]. These are data
agnostic and their effectiveness depends on the implementation.
The proposed platform uses a combination of write through caching
for improving the performance of temporally located data.

3 ARCHITECTURE
This platform is built on the principles of lambda[17] and hyperscale[4]
architecture to address the challenges of combining disparate data
sources and dynamically scale to address computational challenges.
The architecture benefits from the use of widely available off the
shelf servers and computational equipment. The biggest benefit lies
in the ability to scale the platform as a function of load and latency
to accommodate additional users and requests. The architecture
can be scaled both vertically and horizontally, maximizing in-built
fault tolerance and cost-effectiveness.

The proposed architecture is shown in Figure-1 that includes
data collection and processing, distributed data grid to expedite
the data transfer and reduce latency, application server interface,
machine learning, and data quality evaluation. The remainder of
this section discusses these in more detail.

3.1 Data Collection
The first step in release planning is the collection and curation
of high-quality authoritative data. This involves discovering rel-
evant data source(s), sanitizing and transforming the new data,
de-duplicating, and semantically conflating it with other existing
data sources. The data collection’s geographic coverage is the en-
tire planet and the spatial granularity goes to the county or even
census block group level. Besides, data gathering should be done in
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Figure 1: COVID 19 platform architecture
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Figure 2: Unified mapping format for disparate data sources

real-time and continuously for the currency of insights. On aver-
age, over 100 data sources were searched daily and several million
records were collected. At this scale, data curation efforts must be
automated with a human in the loop only when necessary.

A universal attribution format was designed to unify disparate
data sources (𝑋 ∈ {𝑥1, 𝑥2, 𝑥3, ...𝑥𝑚}) and a translation engine (Θ)
is developed to map attributes of disparate data sources to the
universal format data (𝑌 ∈ {𝑦1, 𝑦2, 𝑦3, ...𝑦𝑠 }). For each data source,
a separate sequence of translations (Θ ∈ {𝑓1, 𝑓2, 𝑓3, ...𝑓𝑚}) were
designed such that each uniquely maps to universal data format as,

𝑓𝑖 : 𝑥𝑖 → 𝑌 (1)

where each data source 𝑥𝑖 has 𝑘 attributes, 𝑥𝑖 ∈ {𝑥1
𝑖 , 𝑥

2
𝑖 , 𝑥

3
𝑖 , ...𝑥

𝑝

𝑖
}

that maps to 𝑌 𝑠 attributes, such that 𝑝 ≤ 𝑞 ≤ 𝑟 ≤ 𝑠 , as shown in
Figure 2. This was an important step to be performed so aggregate

statistics and visualization from disparate data sources can be done
seemliness manner.

3.2 Data Processing and Analytic
Developers use RESTful APIs to access the data for processing and
generating analytics. Also, boilerplate templates are made available
for developers to generate analytics via natural language processing
and machine learning. Besides authoritative data, the platform also
harvests social media data (e.g. twitter) to gather information about
infection spread and response. Classification models can be built to
evaluate communication and assess their impact on health. Rigorous
benchmarks that include, quality control, tuning and maturity of
results are evaluated before releasing the results.

Figure 3: Missing data in time-series
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3.3 Quality Assurance Quality Control
A suite of spatio-temporal and statistical data processing templates
are developed to gather insights from the data. In addition, visual-
ization packages such as Vega and custom ensemble visualization
are integrated in the platform to allow the development of interac-
tive dashboards and processing of reports. At times, the platform
ingests direct results of simulation[10] or predictive models[16] for
the purpose of visualization.

Algorithm 1: Algorithm for server-side HyperCache
Function Remove(key) return value

Data: Distributed map
Result: value of element to be removed
𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑜𝑐𝑘 ();
𝑣𝑎𝑙𝑢𝑒 ←− 𝑟𝑒𝑚𝑜𝑣𝑒 (ℎ𝑚𝑎𝑝, 𝑘𝑒𝑦) ;
if value != null then

return 𝑣𝑎𝑙𝑢𝑒 ;
𝑠𝑦𝑛𝑐_𝑐𝑎𝑐ℎ𝑒 () ;
𝑤𝑎𝑖𝑡 ();

else
return 𝑛𝑢𝑙𝑙 ;

𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 ();
Function Update(key, value) return result

Data: Distributed map
Result: value of element to be updated
𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑜𝑐𝑘 ();
𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑚𝑎𝑝, 𝑘𝑒𝑦) ;
if result != 1 then

return 𝑓 𝑎𝑙𝑠𝑒;
else

return 𝑡𝑟𝑢𝑒 ;
𝑠𝑦𝑛𝑐_𝑐𝑎𝑐ℎ𝑒 () ;
𝑤𝑎𝑖𝑡 () ;
𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑙𝑜𝑐𝑘 ();

3.4 Distributed HyperCache
Developing elastic architectures that scale as a function of an evolv-
ing computing workload is essential for real-time applications.
Significant advances have been made in hyper-scalable storage,
data centers, and cloud computing infrastructure to accommodate
the exponential increase of such workload. In this architecture,
we utilize the distributed memory of nodes to improve storage
latency that is processing and simultaneously retrieving a large
amount of disparate data for real-time analysis. HyperCache is
implemented in the form of an In-Memory Distributed Grid and
is built on the top of the Direct-Attached Storage (DAS) comput-
ing cluster running simultaneous applications. These applications
communicate with HyperCache via client-server architecture for
maximum compatibility. A monitoring system is developed and
deployed for performance bench-marking and providing essential
support during exponential data compute workloads. A simple

Figure 4: Replication of an index across six nodes.

representation of adding/updating and removing the element in
HyperCache is shown in Algorithm-1.

3.5 Replicated Data Management
In this section, we discuss fault tolerance and approaches taken to
ensure the platform remains accessible and robust when it is needed
most. The platform manages its data integrity through replication
across multiple servers. As shown in Figure 4, a database index is
broken down in four primary shards (pieces) and four replicated
shards. They are distributed across six nodes in such a way that if
any machine is down or corruption, the database can still be rebuilt
and no data loss occurs. The global consistency is maintained by
frequently broadcasting updates and propagating them on all the
nodes.

3.5.1 Serialization and Optimistic Concurrency. The management
and consistency of aforementioned replicated data is achieved
through serialization with optimistic concurrency control, such that
the execution of a set of parallel data operations (transactions) must
be equivalent to a serial execution of the same data operation[5].
Consider Γ = {𝑡0, 𝑡1, ..., 𝑡𝑚} is a set of parallel transactions. Then,
for each transaction, 𝑡𝑖 , let 𝑅𝑖 is the read set and𝑊𝑖 is write set re-
spectively for 𝑡𝑖 . For example, in parallel when 𝑡𝑖 → 𝑡 𝑗 occurs, then
𝑡𝑖 must come before 𝑡 𝑗 equivalent in a serial transaction. Optimistic
concurrency protocol ensures that any execution if not consistent
is aborted based on the timestamp. A workspace is maintained for
each transaction that later on executed to maintain long-term data
consistency. This mean, sometimes user request response includes
cached results that are not fully updated. Broadly, for three transac-
tions 𝑡0, 𝑡1, 𝑡2 such that their respective timestamps are 𝑡0 < 𝑡1 < 𝑡2,
the operations on a shared object occur in increasing order of the
timestamp. Recent transactions (smaller timestamp) wait for older
transaction (large timestamp) to finish to maintain data integrity.
If an older transaction with larger timestamp (e.g. 𝑟2) encounters
a younger transaction (e.g. 𝑡0), the previous dies and restarts with
a smaller timestamp. This approach avoids potential deadlocks,
as the execution of transactions are based on increasing order of
timestamps.

The optimistic concurrency is broken down in three phases -
i) execution phase, ii) validation phase, and iii) update phase. It
begins by assigning each transaction 𝑡𝑖 a timestamp𝑇𝑆𝑖 at the start
of the transaction and 𝑇𝑉𝑖 at the beginning of validation. It’s read
as assigned as 𝑅𝑖 and written are assigned as𝑊𝑖 in this phase. In ex-
ecution phase, a local workspace is created for each transaction with
shadow copies of object to be updated. These objects are updated
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Figure 5: Optimistic Concurrency Control to store and visu-
alize real-time data ingestion

locally and assigned a version number. In case of abort, the trans-
action is cancelled and the workspace is deleted. Otherwise, the
transaction moves to next phase. In validation phase, mutual consis-
tency among this and the distributed transactions is performed at
remote locations to ensure serializability. The validation between
two transactions (Say 𝑡𝑖 and 𝑡𝑘 ) is achieved as follows-
• Validation of transaction 𝑡𝑖 is not accepted if 𝑇𝑉𝑖 < 𝑇𝑉𝑘 .
• Validation of transaction 𝑡𝑖 is accepted if it does not overlap
with any 𝑡𝑘 .
• The execution phase of 𝑡𝑖 can overlap with update phase of
𝑡𝑘 , given it completes its update phase before𝑇𝑉𝑖 . Validation
of 𝑡𝑖 is accepted if 𝑅𝑖 ∩𝑊𝑘 = ∅.
• The execution phase of 𝑡𝑖 overlaps with the validation and
update phase of 𝑡𝑘 , and 𝑡𝑘 completes its execution phase
before 𝑇𝑆𝑖 . Validation of 𝑡𝑖 is accepted if 𝑅𝑖 ∩𝑊𝑘 = ∅ and
𝑊𝑖 ∩𝑊𝑘 = ∅.

The details of these stages are shown in Figure 5. In update phase,
the changes to the data objects are made permanent and propagated
across the cluster and in persistent memory and storage.

3.5.2 Disaster Recovery Plan. Besides replicating the data across
the cluster onsite, a remote disaster recovery site was also deployed
to keep operations running in case of major failures (such as natural
disaster). We utilized Google Cloud Platform as Disaster Recovery
as a Service (DRaaS) to snapshot and backup the status of current
database every four hours on google cloud. Since, the snapshots are
not instantaneous, take time to complete and asynchronous with
respect to time and data integrity. This approach uses incremental
backup strategies to save change quickly and efficiently. The cloud
only serves as a remote location to store the data and serves as a
backup. When snapshot is in-progress, it is still possible to add new
data and make other requests to the cluster.

3.6 Data and Analytic Quality Control
Data quality and analytics are evaluated to ensure insights are scien-
tifically accurate. The data curation task uses authoritative sources
(such as CDC, JHU, etc.), reducing issues related to accuracy. How-
ever, curation issues occur when data attribution format changes
(e.g. new attribute is added), network connectivity (intermittent dis-
connection, synchronization issue because of latency), among other
issues. An example of Not missing at random (NMAR) data[20]
in univariate time series of COVID-19 case counts are shown in
Figure 3. In the figure, the probability for a missing observation
depends on the value of the observation itself (the observations
are not recorded because of a network error)[13]. If needed, linear
interpolation or arithmetic smoothing is used to rectify the missing

data in time series. Besides, the process also benefits from review by
subject matter experts (epidemiologists, geographers, statisticians)
from time to time.

3.7 Application Server and End User
The application server holds the core deployment of the application.
We have used a load balancer with the multi-instance deployment
of an application server for fail-over and load distribution. The
platform is deployed at https://covid19.ornl.gov can be accessed via
a web browser or through integrating RESTful services. A user au-
thentication mechanism is implemented to secure and limit access
to authorized users only. In section 7, we demonstrate an approach
to extend the platform connecting ESRI services and the develop-
ment of the story-telling feature.

4 RELEASE PLAN
The on-set and rapid spread of COVID-19 created an immediate
need to deploy a reliable and stable situational awareness platform
accommodating inputs generated by several research entities. It
was critically important that this platform should display key sci-
entific findings for policy guidance and informed decision making
within a given schedule, quality, and effort constraints. This led us
to formalize a systematic release plan workflow for the selection
and development of features and their incremental release at a reg-
ular interval. Each release addresses the production of meaningful
insights and new features developed by the participating research
entities. This also allowed all the moving parts of the collaboration
to work in sync, work towards a common goal, and for the end-user
base to anticipate the changes and new updates. The release plan
workflow is shown in Figure 6. The platform also monitors the
usage of its services, detection of spurious activities, report genera-
tion, and allocating resources to allow a third-party application to
utilize analytics and data stream. The post-deploy release step is
useful toward extending the platform and for measuring the use.

5 VISUALIZATION
The visualization technology we use to display the data in this
platform is Kibana, an open source data visualization platform
from the Elastic stack. It provides a variety of standard charts,
time series graphs, geospatial visualizations, and support for Vega
visualizations. In addition, we have developed custom visualizations
that we integrate as plug-ins. The user-facing part of this platform
is organized as a series of dashboards.

5.1 Dashboards
In an effort to effectively organize, explore, and reflect the different
uses of a large and varied volume of data ingested into the plat-
form, we created several dashboards. These dashboards include a
Situational Awareness dashboard (displaying current and histor-
ical data from global, to US state and county spatial resolutions),
a Predictive Analytics dashboard (displaying multiple predictive
models at national, state, and county levels), and more. Some of
these dashboard provide high-level overviews, others provide a
deep-dive into a particular aspect, or even one specific model or
data feature.

https://covid19.ornl.gov
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Figure 6: COVID 19 Release Plan Workflow

Incoming data’s spatial resolution varies from national, state,
county, and city. Temporal resolution ranges from daily, weekly,
and monthly time steps. Data updates occur at a variety of times,
from static-single upload data layers, to daily updates, to a few
updates a month. As such, merging multiple data products into
a simple, cohesive view was a challenge. Furthermore, designing
visualizations to be responsive to global user input and querying
when existing in different spatial and temporal resolutions required
careful consideration during data processing, storage, and visual-
ization.

When possible, we attempted to maintain thematic consistency
for the purposes of intuitive user experience. Most dashboards
consist of interactive maps, time series graphs, and basic charts.
Map layers have zoom-dependent views from country, to state, to
county. For each layer, we define an appropriate aggregation type
(e.g. sum, maximum, etc) depending on the variable presented. To
further create a sense of cohesion between dashboards, we attempt
to use color as a guide: Similar data is shown in similar colors
where possible. For categorical data, we use custom colormaps that
represent the type of data appropriately.

In addition to the utilizing Kibana’s standard visualizations, we
also leverage its support for Vega, a declarative language for web-
based visualizations. Vega allows us to create a wider variety of
visualizations for the platform and gives us the flexibility to further
customize visualizations. For example, in Figure 7 we use Vega to
visualize R-naught estimates for the contiguous U.S., Alaska, and
Hawaii at the county-level in a single map view. The diverging
color scheme provides users with an at-a-glance view of counties
experiencing reproduction rates above or below 1, and the hover-
over tooltip functionality lets them quickly see the data behind the
map. This and other Vega visualizations on the platform query the
most recent data from Elasticsearch indices and are configured to
respect global filters selected by the user, which allows for seamless
and responsive integration with other charts in Kibana dashboards.

5.2 Visualization for Situational Awareness
To illustrate situational awareness (Figure 8), we prioritized the
display of current and historical data and analytics regarding case
counts, deaths, testing, and various mobility metrics. For example,
using daily case counts, we displayed up to date cumulative cases,
new case rates, cases per capita, results from transmission rate mod-
els, and more. We provided supporting data to illustrate variables
that likely influence case counts and deaths. These largely included
various measurements of social reaction to the pandemic, including

Figure 7: County-level map of R-naught estimates with
tooltip functionality. Built with Vega.

dates of school closures, general mobility indices at the national,
state and county scales, transportation intensity, and more. Possible
user interactions include selectable map layers (country, state, and
county scales), dynamically updating map layers based on zoom
level, country/state/county term filters, and hover-over tooltips.

5.3 Forecasting and Predictive Visualization
We accumulated multiple predictive models from public (national
laboratories) and private industries, that provided near future es-
timations on case counts, deaths, hospitalizations, intensive care
patients, and more. Figure 9 shows filtered visualization of mech-
anistic model outputs [19] with different resolutions, including
state and US metropolitan statistical area (MSA). For example, Fig-
ure 9a shows predictions for new cases in Alabama and Figure 9a
shows predictions for new cases in Atlanta, Georgia. Note that
Figure 9 show the results generated on September 6th, 2020. When
the spatial scale and temporal resolution of predictive models were
consistent with one another, attempts were made to group these
model outputs into a single visualization. Otherwise, model out-
puts were placed side by side for comparison. All available model
outputs were displayed in the dashboard, and users had the ability
to filter results by state or county.

5.4 Visualization for Simulation Results
We created dashboards for EpiGrid and EpiCast [10] simulation
results that were produced specifically in the context of this project.
For each model, we developed a custom processing workflowwhich
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Figure 8: Situational Awareness Dashboard.

converts the model outputs from their respective formats into a
common format that is ingestible into ElasticSearch.

Since aggregations for map layers require incident data, but both
models report cumulative infected individuals, we also computed
the daily increase in cases as part of our workflow. This allows us
to select a start date and end date and produce an accurate count
of new cases that were predicted within the given timeframe.

EpiGrid focuses on different stages of infections from first expo-
sure, infectiousness (with isolation status to account for quarantine),
requiring hospitalization (with differentiation on whether or not
they receive it to model healthcare availability), recoveries, and
deaths. EpiCast focuses more on the severity of symptoms with
more detailed outputs for hospitalized individuals. It provides out-
puts for symptomatic, hospitalized, in Intensive Care Unit (ICU),
and requiring a ventilator. Unlike EpiGrid, it does not provide re-
coveries or deaths.

The dashboards for both models are similar, with general infor-
mation about the model, interactive elements for filtering, a map,
and a side bar with instructions, information about layers, and leg-
ends. The blue section in Figure 10 shows the top section of the
EpiCast dashboard with a view of predicted county-level data of
individuals in the ICU on the map. The green section of Figure 10
shows a sample of visualizations from the EpiGrid dashboard for
a subset of states (Georgia, Kansas, New Mexico, and New York),
curves for each case type, and a comparison with ground truth data

(a) New cases predictions for Alabama

(b) New cases predictions for Atlanta

Figure 9: Mechanistic model visualization.

from the New York Times dataset [25]. In the pink section of Fig-
ure 10 we show a comparison of different model output parameters
using the same colormaps as other dashboards (cases = yellow/red,
recovered = green, death = black/gray) for some counties in New
York. The data for this model run does not cover all counties of each
state, which reflects in the comparison chart (top right in green
section): the predicted case number (blue) is much lower than the
actual case number (red).

6 HOTSPOT DETECTION
Spatial hotspot analysis can identify clustering areas of a spatial
phenomenon. To help decision makers better understand the geo-
graphic patterns of the COVID-19 in the US, we have developed a
hotspot detection module in our platform. For this initial version,
we have selected two metrics (cases per 100k population and deaths
per 100k population) that capture the prevalence and seriousness of
COVID-19 in a region. In the future, the hotspot detection module
can easily be extended to detect hotspots for other types of met-
rics (e.g, positive rate of testing, hospitalization). The raw data for
hotspot detection is collected from Johns Hopkins University (JHU)
Data Repository, which provides daily update of confirmed positive
cases, deaths for the US at county level. The raw data is cleaned and
then joined with census data to provide population data, with US
county shape file to provide spatial information. For each county,
we then calculated the confirmed case per 100k population and deaths
per 100k population.
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Figure 10: Simulation dashboard layout and some example
visualizations from the EpiCast (blue section) and EpiGrid
(green and pink sections) dashboards.

6.1 Hotspot detection algorithm
The hotspot detection algorithm uses the Getis-Ord Gi* statistic
[12], which works by looking at each county within the context of
neighboring counties as well as the national average, to determine
whether a county is a hotspot or not.
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In equation 2, 𝑛 is the total number of features, 𝑥 𝑗 is the attribute
value of target feature and𝑤𝑖, 𝑗 is the spatial weight between feature
𝑖 and 𝑗 . As we can see from equation 2, Gi* statistic accounts for
both national average and neighborhood average. A county that
has a high value and is surrounded by other counties with high
values as well is a statistically significant hot spot.

6.2 Hotspot visualization
The Gi* statistic calculated for each county is a z-score. If the z-
score is statistically significant, the larger the z-score is, the higher
confidence we have about the clustering of high values (hot spot).
Since the significance of each county is tested individually during
the hotspot detection, there could be false positive due to multiple

(a)

(b)

Figure 11: Hotspot visualization.(a) case per 100k population.
(b) death per 100k population.

testing. Therefore, we have to calculate the corrected p-value cut-
off to correct the bias of multiple testing [3]. The corrected p-value
is used for hotspot visualization in our platform.

7 EXTENDING THE PLATFORM
In an effort to add extensibility to the platform and allow additional
flexibility in web visualization, middle-ware was developed and
added to the COVID-19 platform. The middle-ware is based off of
the open source project Koop developed by Esri. Koop is a Node.js
web server that translates GeoJSON stored in native formats and
locations into RESTful Web services. Using the ElasticSearch plugin,
Koop was integrated with the existing COVID-19 platform. The
output from Koop is Web Feature Services (WFS) which are usable
by many web mapping platforms and frameworks. In this case, the
WFS generated from Koop are used in a deployment of ArcGIS
Enterprise where visualization products including web maps and
web mapping applications are created and deployed.
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Figure 12: Koop architecture

7.1 Design: Extending Koop
As previously mentioned, Koop with the ElasticSearch plugin, was
used to extend the COVID-19 platform, but additional functionality
was also developed to customize Koop to fit specific needswithin the
platform. Koop expects the data being queried to follow the right-
hand rule which is a GeoJSON standard that mandates coordinates
of exterior rings of a polygon be formatted in a counterclockwise
order. Some indices in the COVID-19 ElasticSearch do not follow
this standard so functionality was added to reverse the order of the
coordinates when necessary. In Figure 12, we show the architecture
to connect with COVID-19 platform.

There was also an issue of indices having multiple documents
representing the same geometry resulting in a WFS with stacked
features. Functionality was developed to allow a service to be con-
figured to only return a single geometry in cases of redundant
geometries. The attribution to be returned is also configurable, but
as it relates to the COVID-19 platform, the document with the most
current date is returned in the case of stacked geometries.

Koop was also extended to account for cases where an index did
not include and geometry but had geographic context (e.g county
name, state name, FIPS). An additional feature was developed to
allow joining the attribution of an index to the geometry of another
index. The COVID-19 platform includes indices for both county and
state geometries which were used to add geometry to non-spatial
indices that had a geographic indicator, in most cases FIPS values.

7.2 Deployment
Because Koop is a simple and lightweight Node.js web server there
are many options for deployment that offers flexibility and scalabil-
ity. One limiting factor, however, is that Koop is single threaded and
performance degrades as more services are being generated and
used in front end applications. To counteract this, Docker was used
to deploy multiple instances of Koop. The deployment strategy was
to have a separate Docker container for each WFS output. In some
cases, this included multiple containers and services for a single
ElasticSearch index.

7.3 Use Case
The extended version of Koop deployed on an array of Docker
containers was used to integrate the COVID-19 Platform to a de-
ployment of ArcGIS Enterprise. ArcGIS Enterprise includes ArcGIS
Portal which allows users to create and share maps and applica-
tions. The WFS generated from Koop that has been configured

to the COVID-19 platform’s ElasticSearch instance can be added
directly into a web map or web mapping application in ArcGIS
Portal seamlessly. An application was developed to give a national
overview of the current state of the COVID-19 crisis. Also, a state
level application was also created to provide a more detailed look at
the situation. Both of these applications leverages openly available
services, services generated from ArcGIS Enterprise, and services
coming from Koop and the COVID-19 platform.

8 PERFORMANCE AND LOAD TESTING
The platform’s stability and reliability is evaluated using a suite of
non-functional tests that specifically evaluates the readiness of a
system. Some examples include load testing, performance testing,
availability testing, etc. This is achieved to determine a platform’s
behavior under both normal and at peak conditions. For this study,
we perform load testing to evaluate simultaneous user access and
measure network performance.

8.1 Basics
For load testing the COVID-19 platform, k6[1] was used, an open-
source load testing tool. To visualize and track load testing metrics
on the VM hosts, Prometheus and Grafana were deployed for col-
lection and visualization of the metrics. To generate host metrics,
Node Exporter provided a way to constantly expose metrics over a
port number and Prometheus was then configured to scrape those
metrics by providing the target IPs to Prometheus’ configuration.
The community dashboards available for Node Exporter provided
visualization of the VM specific metrics. The official k6 Grafana
dashboard provided details of the load test, including HTTP request
durations, HTTP requests per second, etc. An InfluxDB instance
was created as well, as k6 provides native support on sending met-
rics directly to InfluxDB.

8.2 Approach
To create the capable script to be used by k6, its recorder chrome
plugin was used to record browser actions and convert them to
the script. This included logging in and loading various layers in
Kibana dashboards. After modifying the scripts to allow variable
overrides, a Docker container was created that loaded the scripts vi
CI/CD in GitLab. Then using a batch job deployment in Kubernetes,
the load test could begin with various user count simulation and
duration. Running this as a Kubernetes job offered the capability to
scale the job, deploying multiple parallel running containers. This
was used to generate load on the system with environment variable
overrides selecting user count simulation and duration of the test.
This also permitted the selection of various scripts available in the
container for different dashboards within covid19.ornl.gov, without
the need of multiple unique docker images.

8.3 Benchmark Results
Our test methodology was to generate load to certify that the
COVID19 website was capable of supporting 1,000 simultaneous
users. The load testing was run in four stages: 100, 250, 500, and
1,000 simultaneous users. In Figure-13, requests per second gen-
erated by 1,000 users is shown. The performance was as expected
with low latency and higher throughput as show in Figure-14.
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Figure 13: Loading testing for 1000 user shows number of
request simulated per unit time.

Figure 14: Request frequency and performance latency

We ran a peak test at 1500 users to determine how the system
would behave and if performance would degrade beyond the 1000
user limit. Apache reverse proxy was unable to process more than
1,024 users and should be replaced with HAProxy or another proxy
engine should the number of simultaneous users exceed 1000.

9 CONCLUSION
In this work, we discussed the development of an all-encompassing
operational platform for non-pharmaceutical interventions to the
COVID-19 pandemic. The platform is deployed at https://covid19.
ornl.gov/ and accessible to authorized users. The underlying scal-
able architecture supports an end to end workflow for joint pan-
demic modeling and analysis towards policy guidance and decision
making. Custom visualizations are added to display a complex re-
lationship among various data set and the user-facing part of this
platform is organized as a series of dashboards. We hope the inte-
gration of various datasets, predictions, and simulation results will
provide a complete picture to decision-makers for policy guidance.
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