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Abstract

We present EPIsembleVis, a web-based comparative visual analysis
tool for evaluating the consistency of multiple COVID-19 prediction mod-
els. Our approach analyzes a collection of COVID-19 predictions from
different epidemiological models as an ensemble and utilizes two met-
rics to quantify model performance. These metrics include (a) prediction
uncertainty (represented as the dispersion of predictions in each ensem-
ble) and (b) prediction error (calculated by comparing individual model
predictions with the recorded data). Through an interactive visual inter-
face, our approach provides a data-driven workflow for (a) selecting and
constructing the COVID-19 model prediction ensemble based on the spa-
tiotemporal overlap of available predictions of multiple epidemiological
models, (b) quantifying the model performance using both the uncer-
tainty of each model prediction ensemble, and the error of each ensemble
member that represents individual model predictions, and (c) visualizing
the spatiotemporal variability in the projection performance of individual
models using a suite of novel ensemble visualization techniques, such as
the data availability map, a spatiotemporal textured-tile calendar, mul-
tivariate rose chart, and time-series leaflet glyph. We demonstrate the
capability of our ensemble visual interface through a case study that in-
vestigates the performance of weekly COVID-19 predictions, which are
provided through the COVID-19 Forecast Hub [47] for the United States
and United States Territories. The EPIsembleVis tool is implemented us-
ing open-source web technologies and adaptive system design, rendering it
interoperable with Elasticsearch and Kibana for automatically ingesting
COVID-19 predictions from online repositories, and it is generalizable for
analyzing worldwide projections from more epidemiological models.

1 Introduction

The COrona VIrus Disease (COVID-19) epidemic began in late 2019, spread-
ing human suffering and socio-economic turmoil around the world ([48, 32]).



COVID-19 has posed a significant challenge to policymakers who have to de-
cide on which mitigation strategies should be introduced (e.g., mask mandates,
school closures, or lockdown), when they should be introduced, and when it is
safe to lift these mandates ([1]). Its infectiousness, combined with a slow onset
in symptoms and the presence of a high percentage of asymptomatic individu-
als, have made it challenging to understand and predict the spread. Effective
intervention, mitigation, and control of the epidemic require a solid understand-
ing of the mechanism of COVID-19 that governs the pandemic’s transmission,
disease, and immunity ([18, 40]), as well as precise and timely predictions of new
cases and deaths. A reliable prediction needs to approach the disease from a
holistic perspective that considers the interplay between the multiple variables
(e.g., biophysical, social, and human) across large geographical areas ([12, 46]).

Epidemiologists and modeling experts world-wide have risen to the challenge
of developing reliable model predictions of the future COVID-19 pandemic in
terms of cases and deaths ([1, 22, 40]). These epidemiological models are de-
signed to clarify the extent and impact of the pandemic, providing predictions
that help guide the government decisions, planning, and community prepared-
ness in this pandemic ([11, 8, 5]).

Despite their practical value and usefulness, many of these models produce
divergent and conflicting future projections ([18]) for some geographic areas
(e.g., city, country, and state), impeding reliable decision supports for allocat-
ing resources and implementing mitigation practices. The uncertainty in these
predictions often arises from the simulation process, where each prediction is
computed using models based on distinct approaches (e.g., statistical and mech-
anistic), varied parametric assumptions (e.g., transmission and immunity), and
different quality of calibration data (e.g., divergent detection of cases, reporting
delays, and poor documentation) ([1, 18, 40]). Since each model has its own
unique assumptions (e.g., policies, compliance, transmission rate), constraints
(e.g., geographic and temporal extent, a limited model of policy differences be-
tween areas), and predicted type of data (e.g., cases, hospitalizations, deaths,
etc.), model predictions can vary depending on the amount and veracity of infor-
mation about an area, but also depending on how strictly mitigation strategies
are implemented, and how compliant the population is with these strategies
(13)).

Given the divergence in the predictions from different models, it is difficult
to determine the best-performing models that produce the most reliable predic-
tions. Analyzing the consistency of these models, which may potentially imply
model performances, faces challenges due to the complex nature of these model
predictions that, similar to ensemble members in many other scientific domains
(e.g., climate and transportation), these model predictions are spatiotempo-
ral, multivariate, and heterogeneous in data format and prediction coverage
([24, 28]). In addition, the high number of different models (over 70 for the
United States alone ([4]) poses new challenges, such as quantifying differences
and uncertainties among multiple models, comparing their predictions against
each other, and evaluating the model performance during different scenarios
(e.g., in states with different population density and during different outbreak



stages). All these factors make it extremely challenging to weigh models against
each other at a larger geographic scale (e.g., the contiguous United States).

In this paper, we present the design and development of EPIsembleVis, an
innovative visual analysis approach to evaluate the spatiotemporal variability in
the consistency of COVID-19 prediction models by analyzing their results as en-
sembles through interactive and comparative visual exploration. The approach
aims to provide data-driven insights to help epidemiologists and health care
professionals explore potential factors that may affect the prediction models’
consistency and select the appropriate model to support the decision-making in
a time- and space-specific scenario. We develop a visual interface to provide
an integrated workflow for (a) selecting and constructing the COVID-19 model
prediction ensemble based on the overlapping projection availability of multiple
epidemiological models in both time and space, (b) quantifying the consistency
of ensemble model using both the uncertainty of each model prediction ensemble
by comparing its member against each other, and the error of each ensemble
by comparing its members’ prediction with the recorded case information, and
(c) visualize the spatiotemporal variability in the consistency of the COVID-19
model prediction ensembles (e.g., new cases and deaths) using a suite of novel
ensemble visualization and user interaction techniques. The visual interface
is integrated into a big-data cyberinfrastructure powered by an Elasticsearch-
Kibana stack, which adopts an ontology-driven data pipeline to automate data
mining, transformation, and enrichment processes. These processes aim to re-
trieve model prediction data and recorded case data from COVID-19 Forecast
Hub ([4]) and provide the most updated record to the visual interface in a
near-real-time fashion.

To demonstrate the capability of the EPIsembleVis, we include a case study
that investigates the consistency of weekly COVID-19 predictions, which are
generated at the state level from 4 popular predictive models for the contigu-
ous United States. By overlaying our ensemble visualizations with other spa-
tial information, we are able to obtain some data-driven insights regarding the
empirical relationship between the model uncertainty and population density.
Developed with adaptive design and flexible architecture, the data-driven vi-
sual interface of EPIsembleVis is generalizable and extendable, and can support
visual analysis of ensemble COVID predictions that are produced in other geo-
graphic entities (e.g., other countries and continents), from more epidemiologi-
cal models, and at alternative spatial (e.g., county and city) and temporal (e.g.,
monthly and daily) scales.

In summary, our contributions are as follows:

1. An big-data cyberinfrastructure that adopts an ontology-based data pipeline
to create a COVID-19 Forecast Ensemble datasets.

2. A visual representation that overviews necessary information for the en-
semble analysis, such as the availability and predicting parameters of in-
dividual models, at a glance.

3. A textured tile-based calendar that highlights spatiotemporal patterns of



differences between predictions from selected models.

4. Two glyph-based representations of model-outputs which enable the com-
parison between different model predictions, as well as comparison with
recorded cases in both the spatial and temporal dimension simultaneously.

2 Related Work

A comprehensive evaluation of the COVID-19 prediction model consistency is
a complex effort that requires solid understanding and knowledge in both the
epidemiological modeling, and ensemble model analysis and visualization. Based
on these two types of effort, we divide our related work section into the following
subsections.

2.1 COVID-19 Prediction Models

With the global propagation of the coronavirus disease 2019 (COVID-19), epi-
demiologists worldwide are rushed to develop epidemiological models for fore-
casting the future of the pandemic ([22, 1]). Despite their capability of producing
quantitative projections of infections and mortality estimates, these models and
their performances are usually affected by a set of model assumptions and con-
figurations. As many aspects of the COVID-19 epidemics still remain unknown
and need to be assumed ([22]), it would not be sufficient and reliable to rely
on the forecasts of a single model that is developed based on a specific set of
assumptions and calibration data with limited quality and quantity.

There are two distinct branches in epidemiological modeling: Mechanistic
models ([15]) and Stochastic models ([18]). Each type of epidemiological model
has its strengths and limitations ([29, 11, 52]), and it is critical to compare
results from different models to gain a better understanding of potential future
behaviors.

2.1.1 Prediction Ensemble

Given the fact that many epidemiological models produce conflicting projections
and, according to many modelers, may have varying performances for making
forecasts ([1, 18]), one approach to reduce and analyze the uncertainty in these
models is through the development of prediction ensemble, through which mod-
els of different types (with different configuration and assumptions) are executed
to generate multiple realizations of the same projections ([49]). The prediction
ensemble approach usually produces a collection of spatiotemporal outputs, each
of which is generated by a single model run and is defined as an ensemble mem-
ber ([37, 2]). Currently, ensemble data analysis and visualization are widely used
in many domains, such as climate science and oceanography, to help scientists
model complex systems, reduce uncertainty, and explore sensitivity to different
model parameters, assumptions, and initial conditions ([37, 36, 17, 39]).



Ensemble datasets are an increasingly common tool to help scientists sim-
ulate complex systems, mitigate uncertainty, and investigate sensitivity to pa-
rameters and initial conditions. These spatiotemporal datasets are large, mul-
tidimensional, and multivariate. Due to their complexity and size, ensembles
present challenges in data management, analysis, and visualization. Currently,
comprehensive ensemble data analysis and visualization that evaluates the con-
sistency for COVID-19 forecasting models in the health geography sector is still
rare. The most relevant application would be the COVID-19 Forecast Hub
([26, 4]), which focuses on the preparation and compilation of COVID-19 en-
semble projections from different models, and provides basic model comparison
capabilities that only focus on a single data dimension (e.g., temporal or spatial)
using line charts.

2.2 Ensemble Visualization

Effective ensemble visualizations help domain scientists gain a more intuitive in-
terpretation and understanding of patterns within a complex dataset ([49]). By
nature, ensemble data are typically large, multivariate, and multivalued, and can
be defined for multiple data dimensions ([21, 28, 38]). Due to this complexity,
ensemble data often entail multiple facets that need to be considered simultane-
ously during the analysis and visualization. They are challenging to explore and
comprehend using a single visualization technique, which usually covers only one
or two facets ([49, 24]). In addition, the unique member dimension in the en-
semble data cannot be efficiently represented through traditional visualization
techniques, posing further challenges in data analysis. Given these challenges, a
variety of analytical and visualization techniques have been proposed to reduce
the complexity and dimensions in ensemble datasets, characterize uncertainty,
and evaluate the accuracy and reliability in the data ensemble ([36, 52, 21, 39]).

One of the most recent comprehensive reviews of the ensemble visualiza-
tion and visual analysis is offered by [49], who summarized a wealth of past
applications that utilize combined visualization techniques (e.g., vectors, color
maps, glyphs, maps, and time-series) to simultaneously cover multiple facets and
dimensions of the ensemble data. Examples of these applications include the
visualization of ensemble uncertainty in (a) the spatial, ensemble, and multivari-
ate dimensions ([21, 35, 20]), (b) spatial and temporal dimensions ([16, 17, 41]),
and (c) temporal and ensemble dimensions ([33, 25]).

Despite useful developments in the ensemble visualization domain, many of
these past applications were developed as either desktop-based or traditional
web-based applications. They often face software engineering challenges re-
garding system adaptability and frequently updated new data that are avail-
able through various online repositories and cyberinfrastructure. The above-
mentioned challenges limit the capability of these applications for conducting
ensemble analysis on time-critical data, such as COVID-19 model projections.
In addition, many of the past applications rely on the coordination of multiple
visualizations in the visual interface to cover multiple dimensions of the ensem-
ble data. This requires a significant amount of interactions between the user



and the visual interface. In this setting, the visual analysis tool might not be
very intuitive for non-expert users. Since the ultimate objective of analyzing
COVID-19 prediction ensembles is to enable timely and accurate insights, and
decision supports for preventing the further spread of the disease, it is vital to
have ensemble visualization platforms which are intuitive and informative. In
this regard, a single innovative visual representation, which can reveal multiple
facets of the ensemble data at the same time, is preferred than multiple visu-
alizations that require a moderate amount of users’ effort for interaction and
interpretation.

3 Overview

This section will provide an overview of EPIsembleVis at the example of weekly
forecasts at the state level. However, these concepts translate well to other
spatiotemporal granularities. We will discuss any required modifications in the
corresponding subsections. At the temporal level, we focus on weekly forecasts
as this allows us to bypass the stark daily variations (especially in ground truth
data), and it is consistent with outputs from a large number of forecasting mod-
els, as we will discuss in Section 4. At a spatial level, we focus on states because
counts are less susceptible to noise than county level, and many regulations
are implemented for specific states, which provides a more consistent basis of
comparison. In addition, we also aggregate to geographic regions to provide
relevant geospatial visualizations at a coarser level of detail. The individual
visualizations as well as their results are discussed in Section 5.

3.1 Framework and Visual Workflow

This subsection presents the technical details that are related to the implemen-
tation of the EPIsembleVis. The developmental efforts of the visual analysis
tool can be divided into two parts: (1) data compilation and indexing on the
server-side, and (2) the visual interface design on the client-side.

The data compilation and indexing are achieved through a big-data cyber-
infrastructure that is powered through the combination of Elasticsearch and
Kibana. The Elasticsearch is a distributed, multitenant-capable full-text search
engine that is able to conduct the web mining, ingestion, and archiving of large-
scale data in an automated manner. To facilitate the data retrieval from and log
management of the Elasticsearch, the Kibana online data visualization platform
is designed to serve as an API end-point for querying and access the tremendous
amount of web-mined data gathered through the Elasticsearch. Taking advan-
tage of this cyberinfrastructure, we developed our EPIsembleVis application as a
Kibana visualization plug-in. This implementation provides an automated data
provision pipeline that seamlessly connects the EPIsembleVis with the Elas-
ticsearch, rending the visual interface flexible and generalizable. Through this
connection, the visual interface is able to access and analyze the latest COVID-
19-related data resources (e.g., model projections and ground truth information)



Columns indicate data update dates, rows indicate models, and color
represents variables (case, hospitalized, death)

Model Update Date

Auquan-SEIR
CDDEP-SEIR MCMC
‘CEID-Walk
CMU-TimeSeries
COVIDhub-baseline
COVIDhub-ensemble
CU-nochange
CU-scenar

Step 1: Data Selection and Filtering

* Johns Hopkins University
* New York Times

* Case/Hospitalized/Death
* Cumulative/Incident

et
Step 2: Model and Metrics Selection

* 70 Models

Update dates

* Standard
Deviation

* Coefficient of
Variation

Imperial-ensemble1
Imperial-ensemble2
lowastateLW-STEM

1c8-
JHUAPL-Bucky
JHU_IDD-CovidsP
Karlen-pypm
LANL-GrowthRate
LNQ-enst
MiTCovAliance-SIR
MIT CritData-GBCF
-GLEAM_C

H-3PU

SWC-TerminusCM
SteveMcConnell-CovidComplete
TTU-squider

UA-EpiCovDA

-SUEIR

ul
UCM_MESALab-FoGSEIR
UCSD_NEU-DeepGLEAM
UChicago-CovidiL
UChicago-Covidi._100
UChicago-CovidiL_T0_+
UChicago-CovidiL 30+
UChicago-Covidil. 40
UChicago-CovidiL 60
UChicago-CovidiL 80
UMass-# owd

UMass-MechBay
UMich-RidgeTfReg
USACE-ERDC_SEIR

UVA
WalmartLabsML-LogForecasting
YYG-Paramsearch

Group-CLEP

o fra Giis
Excaz ‘_3.3'.
EHEE L 3313285050
mE: " ;
L
‘ | I

Yu_
epiforecasts-ensemblel

Heatmap calendar for ensemble metrics
August September

510
" 1520
= 3050
N/A

Weeks

October

‘ Step 4: Map-based Pattern Overview ‘
e ¥ B (e e T ey Model-to- h

Rose Chart </

S
0
/e
e

=

Figure 1: The overview and general user Workflow of the visual interface.

from any online repositories in near-real-time ([44]).

The novel and customized spatiotemporal visualizations presented in this pa-
per are implemented using D3JS JavaScript libraries that utilize both HTML5
Canvas graphics and Scalable Vector Graphics (SVG) elements to render inter-
active visual representations both in the interface and on the web map. The
interaction between the user controls that enable the selection of variables and
models and the coordination of various linked visualizations is created through
the direct manipulation of the HTML Document Object Model (DOM) elements
using both D3JS and JQuery JavaScript libraries.

The visual interface is developed using adaptive and interoperative web tech-
nologies and design patterns, and therefore is generalizable and scalable for
conducting comparative visual analysis for prediction datasets that contain pre-

dictions from more models or in

other countries. The visual interface can be

readily integrated into major big-data analytical platforms, such as Grafana and

Kibana, as a plugin.



3.2 Data Acquisition

Our main data source is the COVID-19 Forecast Hub data ([47]) which is pro-
vided through the Center for Disease Control’s forecasting hub ([4]). The fore-
cast hub collects data from a large number of different models which provide
forecasts of cases, hospitalizations, or deaths at national level (for the United
States), by state, or by county.

During the initial development of this work, we created preliminary analyses
and visualizations for a mixture of public and non-public model forecasts: Epi-
Grid and EpiCast ([11]), LANL COVID-19 Cases and Deaths Forecasts ([27]),
and THME ([19]), to test the concept of the EPIsembleVis. We will focus this
paper on the forecast hub data selection, since two of these models (IHME and
LANL) are part of the forecast hub data, access to EpiGrid and EpiCast is
manual, and EpiGrid is not routinely run for a large number of states.

As ground truth data, we use the Johns Hopkins COVID-19 Data Reposi-
tory ([10, 23]), as well as the New York Times Data ([31]). Both datasets are
also available through the forecast hub ([47]).

As the first step of our data workflow, we pull an automatic update from the
forecast GitHub ([47]), and optionally, other model or ground truth sources.

4 Ontology-driven Data Compilation

The COVID-19 Forecast Hub dataset ([47]) contains predictions from 70 differ-
ent models at the time of writing. Each of the datasets in the collection contains
predictions for weeks (58 models), days (1 model), or both (11 models). The
predictions can be for cases (30 models), hospitalizations (12 models), or deaths
(65 models), and each of these variables can be provided as incident data (daily
new incidents of each variable), cumulative data, or both. All 70 models provide
a point estimate, while some models provide additional ensembles of different
quantiles.
The data is available at the following geographic levels

e National (53 models): For this subset of data, it is not clear which states
and/or territories are included.

e State (63 models): The number of states included varies between 1 and
56 states. 24 models include all 50 states with or without the District of
Columbia, 19 models include some or all U.S. Territories, and 18 models
include less than 50 states (12 of these models include less than half of all
states).

e County (19 models): Again, there is some variation in how many counties
are included. 11 models include more than 3,000 counties (50 states with
D.C. have 3,141 counties), and 4 models include less than 1,000 counties.

Most model data are updated daily or weekly, with a new set of predictions
for the following days/weeks. However, this does not always happen consistently



that the temporal resolution of these models may change during different time
periods.

To create a better understanding of data availability, we created an overview,
which combines model updates and variable of COVID-19 data (cases, hospi-
talizations, deaths). The data availability map in Figure 1 shows an overview
of when models were updated, aggregated to a weekly level. Weeks are repre-
sented as columns, and models are represented as one row. For weeks in which
the model was updated, the corresponding cell is colored to represent which
data types are available. With this representation, it is easy to see at a glance
how regularly models update and how long they have been part of this dataset.
We will discuss this visualization in more detail in Section 5.1.

4.1 Data Preparation and Fusion

The format for model outputs in this dataset is consistent across all models,
which enables us to use a single pipeline for data compilation. However, due to
the many options provided to accommodate different prediction parameters, it is
rather complex and requires several processing steps to produce easily ingestible
data for visualizations.

As the first step in data preparation, we prepare a data dictionary that holds
all relevant model properties, file paths, and the number of days or weeks the
models project.

We are particularly interested in comparing different models, rather than
different projections by the same model. Therefore, in the next step, we filter
the model outputs to contain only point estimate data, which is available from
all models, instead of using the quantile data that is only provided from a few
models.

Finally, we filter each model output to contain only outputs at the state
level. As we are considering data for the United States and its territories, one
single geographic entity is too coarse, and it can be aggregated on-the-fly. Most
models that provide county data also provide state data. For the few exceptions,
the county data can be aggregated up to states very easily.

4.2 Spatial and Temporal Aggregation

The next step of our data workflow is to develop data aggregation for each
model. As the models in this dataset update on different days of the week, it
produces a temporal heterogeneity in the ensemble dataset that prevents the
comparison between models. To facilitate comparisons, we summarize them by
week. The majority (70%) of updates happen on Sundays or Mondays. To
ensure the integrity of the datasets and remain close to the conventions that
are adopted by disease control professionals ([7]), we choose to start weeks on
Sundays. As for week numbers, we assign ISO week numbers that apply to all
days except Sunday, which are part of the prior week under the ISO definition
but assigned to the following week for this aggregation. The data availbility
map in Figure 1 uses this aggregation to represent the frequency and time of



model updates in an intuitive format, which makes it easy to compare models.
It also serves as a basis for data selection for ensemble comparisons.

As part of the aggregation process, we also lay the foundation for spatial
aggregations (county-to-state and state-to-region) by adding labels for regions
and states to all data. The aggregation itself will be done through ElasticSearch
and Kibana queries based on user interactions.

4.3 Data Enrichment

Each model has a specific set of predictions. These predictions can have different
combinations of aggregation type and a variable. Aggregation types are either
cumulative or incident (daily update), and variables are the case, hospitalization,
or death. However, none of the models has each possible combination.

To increase the comparability of models, we add missing aggregation types
for each variable. To get incident data i(t) from cumulative data c(t) for each
location, we use a simple subtraction of the previous date (¢t — 1).

i(t) = c(t) — et — 1)

For cases in which we only have predicted incident data (i(¢)) and want to
get the cumulative data, we use the the number of reported cases (g(0)):

c(t) = i(t) + 9(0)

The resulting datasets with matching cumulative and incident data for each
available variable are ingested into the ElasticSearch database.

Through a series of aggregation processes, we are able to uniform the variable
type (e.g., death, case, and hospitalization), as well as spatial and temporal
enumeration units of COVID-19 projections (e.g., new cases for each state and in
each week) from various epidemiological models. By grouping these aggregated
projections based on the same type, state, and week, we can readily construct
COVID-19 model prediction ensembles, in which individual model predictions
are serving as an ensemble member.

4.4 Ensemble Metrics

Statistical aggregation is often used to create metrics for characterizing the
ensemble data in many past studies. In this study, we use two metrics to
quantify the consistency of multiple models, which include (a) the uncertainty
among multiple ensemble members within a model prediction ensemble and (b)
the accuracy of the prediction of an individual ensemble member compared to
recorded case numbers. For the purpose of metric definitions, we use x; to
denote recorded case data, and Z; to denote predicted data, where x; and Z;
can be cumulative or incident data for any of the variables (case, hospitalization,
death).
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4.4.1 Ensemble Uncertainty

Given the multivariate nature of each model prediction ensemble, we utilize two
statistical aggregates to quantify the prediction uncertainty within each ensem-
ble. These statistical aggregates include (1) the Standard Deviation (STD) and
the (2) Coefficient of Variation (CV) of each ensemble, and are calculated using
the predictions produced from individual ensemble members. The STD is able
to characterize the absolute variations among the predictions Z; from multi-
ple ensemble members, therefore is suitable for quantifying the uncertainty of
ensembles with a similar magnitude of predictions. For an ensemble with NV
models for a model run date 7 and a prediction date ¢, we get:

N
STD(r 1) = \| g >~ (airt) — mean a(r.0)

In contrast, the CV is calculated by dividing the ensemble’s STD by its
mean, thus provides a normalized characterization of the relative variation (in
percentage) among multiple ensemble members. In this regard, the CV allows
the comparison of the uncertainty between two ensembles with different magni-
tude of predictions, such as comparing the death prediction for Illinois (with the
magnitude of ten thousand) with that for West Virginia (with the magnitude
of hundreds).

STD(7,t
CV(r,t) = T (A’ )
N Zi:l i (Tv t)
In essence, consistent model ensembles are expected to have consensus pro-

jections from its members, therefore they should have relatively low STD and
CV.

4.4.2 Prediction Error

To determine the accuracy of individual models, we compute the relative error £
between model prediction (&) and recorded cases (z), i.e. E(7,t) = %
This metric provides us a sense of how accurate each model predicts, meanwhile
quantifies the accuracy using an easy-to-interpret numeric parameter with linear
scaling. For example, if there are 100 recorded cases and the model predicts 80

cases, ¥ = 0.2. For a prediction of 200, F = —2.

5 Visualization

In this section, we discuss visualizations of different aspects of the data, in-
cluding the range of model run dates (dates on which models were updated),
forecast dates (created in a model run), and forecast data itself. We present
visualizations which compare different model outputs within an ensemble with
each other, and with recorded case data.
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5.1 Data Availability Map

The data availability map represents the dates of model runs (7) for all models,
as well as the type(s) of predictions each model contributes, as introduced in
Section 4. Its name is inspired by heatmaps, which are a common visualization
tool for matrix-like data. As seen in Figure 1, it is easy to see at a glance which
data have gaps in their updates, and how consistently they have been updated.
For easier navigation, we offer options that allow users to sort the list of models
by model name and prediction type. As a colormap, we have chosen a trivariate
color scheme, which can be represented as a Venn diagram. Colors of models
which only provide one type of prediction is kept light (yellow, pink, cyan),
colors for models with two types of predictions are darker (blue, green, red),
and models with all three predictions are darkest (gray).

In addition to serving as an overview visualization, the data availability map
is also a key element to navigating the data. Users can sort the list of models
by dataset name or by the combination of variables in the model. This helps to
find a specific model by name, and it enables the identification of models with
similar variables (e.g., case, death, hospitalization). On the right side of the
data availability map, an array of checkboxes serve as the model selection tool.
Similarly, the checkboxes that are placed below the data availability map serve
as date selection for the model run.

5.2 Model Selection

For the purpose of this paper, we compare four models. Unless noted otherwise,
all Figures display data from these models. The choice of model is based on
their long predictive windows, the large overlap between the different models’
prediction dates, and diversity in approach (both mechanistic and statistical
models are represented in this sample). The selected models are listed below by
the name provided in the Forecast hub ([4]).

e Covid19Sim-Simulator [6]: This is a compartment model that uses
the SEIR compartments ([15]) with continuous-time progression. It uses
state-specific inputs from JHU ([23]) and The COVID Tracking Project

([45]).

¢ THME-CurveFit ([30, 19]): This model utilized non-linear mixed-effects
curve-fitting to predict death rates ([23]) based on the ratio of reported
COVID-19 deaths (compared to a baseline death rate, and models health
service utilization as a function of deaths (based on hospital capacity and
utilization data).

o TowaStateLW-STEM (][50, 51]): This is a non-parametric spatiotem-
poral model for disease transmission to study COVID-19 spread at the
county level. It uses the New York Times COVID-19 dataset ([31]) as
well as information from health department webpages about county-level
infections and deaths to predict cases and deaths.
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e YYG-ParamSearch ([14]): This model uses a hyperparameter optimiza-
tion approach, which minimizes the error between reported deaths and
model predictions. It includes some fixed variables based on literature
(e.g., latency and infectious period), as well as optimized variables (e.g.,
mortality rate, initial and post-lockdown Rgp). In addition to reported
deaths from JHU ([23]), YYG-ParamSearch includes data about individ-
ual state-by-state reopenings.

5.3 Spatiotemporal Variability Tiles

The purpose of spatiotemporal variability tiles is to show a high-level overview
of how model predictions and ensemble metrics (color) evolve over time (tiles)
for different states (sub-tiles). This visualization had its inception as a calendar
view for ensembles of daily prediction data for EpiGrid ([11]), IHME ([30]), and
LANL Growth Rate Model ([34]), seen in Figure 2a. Each day is represented
as a textured tile that displays data for each state. The tiles are arranged in a
calendar shape to provide an intuitive yet compact representation of variation
over time. To reflect the predominant model prediction resolution (weekly) in
this ensemble of models, we modified this calendar view to display a truncated
view that contains one tile for each week of data. This is demonstrated in
Figure 2b for an ensemble of the Covid19Sim-Simulator ([6]) and IowaStateLW-
STEM ([50, 51]) data provided in the Forecast Hub collection.

When a user clicks on a tile in the calendar view, a detailed version of the
tile is displayed, as depicted in Figure 2c. This selection is also used to choose
the date for rose charts (Section 5.5). Each tile is a 7 x 8 matrix, which contains
one sub-tile per state, including the District of Columbia and United States
Territories. While the small version only uses color to represent each state,
the large version is labeled with each entity’s postal abbreviation. If a single
model is selected, the color reflects the values of the chosen model and variable
(e.g., cumulative cases). However, if multiple models are selected, it shows the
selected ensemble metric for the ensemble of chosen models. We use a colormap
with a scale from light yellow to dark red, with missing data displayed in gray.

To learn more about the exact numbers for each state, a user can click its
sub-tile. This will display the exact value for each model on the selected date,
as well as the ensemble metric that overviews each selected model. The user
can also highlight the corresponding rose chart or leaflet glyph on the map by
hovering over a state.

5.4 Leaflet Glyph

The purpose of this visualization is to allow users to simultaneously compare
the predictions from multiple models (shown in different colors) in an ensemble
with the recorded data as a time-series (vertical axis). Through an interactive
user workflow that is developed using the level of detail technique, the user is
able to view both an overview of the model consistency across a large geographic
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Figure 2: Spatiotemporal tiles in a calendar view for daily predictions (a), a
weekly view for weekly predictions (b), and a detailed view of a single tile (c).

area, as well as detailed deviations between individual models and the recorded
data. The details of the workflow are as the flowing:

Step 1: select models for ensemble comparison; Step 2: present overview
of the spatiotemporal comparisons between individual ensemble members (case
predictions) against recorded data in the web-map using leaflet-glyph visual
representation; Step 3: present detailed leaflet-glyph representation when the
user select a specific state. The layout for leaflet glyphs mirrors that of the rose
charts: we display each state’s leaflet glyph of the selected models on the map,
and we provide a close-up, more detailed version of the glyph next to the map
when the user hovers over one of the glyphs.

Each leaflet glyph is built up as follows: The vertical axis displays weekly
predictions, labeled with the week number of the model prediction date. For
the data presented here, there are 8 weeks of overlap between model predictions
and recorded data. On the horizontal axis, we display the prediction error of all
model predictions. In these graphics, we display abs(E), however, a modification
which applies a texture to columns with negative values is under development.
Models are aligned in pairs to the left and right of a central axis, and each model
is shown in a different color. The user can choose one of several colormaps to
differentiate between models.

Figure 5 displays some examples of the glyphs at full level-of-detail, which
will be discussed in Section 6.

We provide two different views of these glyphs: a local view and a global
view. With the local view (Figure 3a), users can compare different model pre-
dictions of deaths for a single state. The axes for all sections of a single leaflet
glyph are scaled to be identical, but each state has independent axes. In this
example, one can see that Covid19Sim (green) and IHME (purple) have very lit-
tle difference from the recorded deaths, whereas the Iowa model has the biggest
difference within this ensemble. With the global view (Figure 3b), the leaflet
glyphs for all states share the same axis. This enables users to compare how
accurate model predictions are for different states. The leaflets for some states,
such as most states in the Northeast, vanish to almost a line. The states which
stand out with much higher discrepancies are predominantly sparsely populated
states.
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Figure 3: Through the visual interface, we compare the local (a) and global (b)
views of leaflet glyphs for visualizing the accuracy of different models across the
states.
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5.5 Rose Charts

The purpose of this visualization is to compare different models in an ensemble
with each other, both in a quantitative way (size of petals representing model
predicted values) and a qualitative view (color representing disagreement). Rose
charts are a well-known glyph-based visualization technique for comparing dif-
ferent data, in which each variable (here: model prediction) is displayed as a
petal in a polar coordinate view. For each state, we display a rose chart of the
selected models on the map. When the user hovers over one of the charts, a
close-up, more detailed version of the chart is displayed next to the map. The
user can choose one of the metrics (coefficient of variation or standard devia-
tion) as a display option. The date for this step is selected using the temporal
variability tiles.

FEach rose chart is built up as follows: Each model is represented as a section
of a circle (or petal), and the abbreviated model name is displayed around the
perimeter of the close-up version. The radius of the petal represents the model’s
predicted value. Concentric circles aid in reading the numbers. An example of
this can be seen in Figure 4 The color of the slices represents the agreement
between models. Light yellow indicates agreement (low coefficient of variation
or standard deviation), and red indicates disagreement between models (high
coefficient of variation or standard deviation). When rendered on the map, we
reduce the level of detail to just petals, crosshairs, and one concentric circle to
minimize visual clutter.

For example, a set of models with high agreements will look like a light
yellow circle (e.g., Pennsylvania in both projections). A set of models with
strong disagreement will have distinctly differently-sized, red slices (e.g., West
Virginia in the 4 week projection). In between these extremes lies a range of
darker yellows and oranges (e.g., West Virginia in the 8 week projection) with
increasingly mismatched slices the closer the color gets to red.

5.6 Limitations

The limitations that are associated with the rose chart and leaflet glyph include
(1) resulting visual clutter that may hinder the overview and visual exploration
of the pattern when visualizing sub-county level COVID-19 predictions, and (2)
providing a limited capability for visualizing a large number of model projec-
tions, which exceed the maximum number of screen pixels.

6 Case Study and Results

The following case study aims to demonstrate the capabilities and effectiveness
of our visual analysis for (a) revealing the spatiotemporal variability in the
consistency of COVID-19 multi-model prediction ensembles, and (b) providing
data-driven insights that enable users to explore potential contributing factors
that may affect the performance of model prediction ensembles.

16



In this case study, we analyze and compare the weekly predictions from four
COVID-19 prediction models across the contiguous United States. These models
include COVID-19 Simulator ([9]), IHME-CurveFit ([13]), IowaStateLW-STEM
([43]), and YYG-ParamSearch ([42]), and their prediction results are aggregated
to state level. We justify our selection of models using the following reasons
that (a) all 4 models provide weekly death predictions, and (b) their prediction
availability (spatial and temporal coverage) has the maximum overlap (13 weeks
in total across the contiguous United States).

From an ensemble uncertainty perspective, we can observe empirical rela-
tionships between the prediction ensemble’s uncertainty and the geographic dis-
tribution and density of the population (detailed in Figure 4) from the rose chart
that visualizes the dispersion in each ensemble prediction. We chose the NASA
night-light map as a base layer for this visualization as it gives a good indication
of population density (i.e., densely populated areas are lit up, whereas sparsely
populated areas remain dark). As one can see in this Figure, most of the states
with high disagreements between models (high uncertainty) are sparsely popu-
lated. Furthermore, one can see that between the earlier prediction (Figure 4a)
and the later prediction (Figure 4b), the uncertainty rises, as indicated by the
darker coloring of most rose charts. This effect is particularly strong in West
Virginia (circled blue). More spatial data layers (e.g., regional mobility and the
implementation of mitigation strategy) can be readily integrated into the web
map (developed using the Leaflet map engine) to provide additional data-driven
insights that are associated with other social-economic aspects.

From a model consistency perspective, we visualize the time-series of model
prediction error by comparing each prediction against the recorded data from
corresponding calendar weeks using the leaflet glyph (as depicted in Figure 5).
This time range is determined by the availability in both the model prediction
and recorded data. Another interesting observation is that the leaflet pattern
for Texas (triangles pointing up) is very different from its surrounding states.
This pattern indicates the prediction errors of all 4 models are highest at the
beginning of the time range (week 31) and gradually decrease as weeks elapse.
On the contrary, the patterns of Missouri and Arkansas are in the shape of a
downward-pointing triangle, indicating that the model prediction errors in these
states gradually increase over time (from week 31 to 38).

To enable comparisons between different states, we set the leaflet glyph to
visualize global differences, the maximum in the x-axis of each glyph is the same.
In this setting, we can observe that the 4-model predictions have a very small
error in Louisiana, as seen by the leaflet’s almost linear shape. Oklahoma and
Missouri have relatively low errors, as indicated by their slim leaflets, whereas
the errors are high for most models in Arkansas, Kansas, and Texas.

There is no model that performs outstandingly in all states, but on the
selected model run', YYG performs well in most states, with the exception of
Texas (where its predictions are off by an almost identical factor each week), and

1Please note that all statements are made for this particular selection of model runs, and
these statements are not universally true for the different models.
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(a) 08-29-2020 (4 weeks into future)
+

Figure 4: Through the overlay of the NASA night-light map, the rose chart
reveals that the overall disagreement between models is less for the 4-week-
into-future projection. Prediction ensembles in populated areas usually have a
lower coefficient of variation (indicated by light yellow colors and well-balanced
petals) compared with the ensembles in sparsely populated areas. Examples
of these sparsely populated areas include (a) Montana, Idaho, and Wyoming
(highlighted by the green dashed ellipsoid), and (b) West Virginia (circled in
blue) in the Eastern area (highlighted with the blue dashed square). Ensemble
predictions in these states present high dispersion as indicated by their rose
charts through the dark red color-coding and unbalanced petal sizes. Close-ups
of the rose charts for Pennsylvania (orange) and West Virginia (blue) are shown
on the right-hand side.
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Figure 5: Through the leaflet glyph, we are able to overview and compare the
time-series of the prediction error from 4 models across 6 states. The prediction
error is estimated by comparing the model prediction with the NYT recorded
data.

Arkansas, where Covid19Sim is the only model that performs well. The Iowa
and IHME models both perform well in Kansas, Oklahoma, and Louisiana, and
worst in Missouri, Arkansas, and Texas.

Our selection of models aims to provide a showcase of potential insights that
can be generated through our visual analysis. As the GIS-based visual interface
allows users to select a different combination of models that provide predictions
for other variables (e.g., cases and hospitalizations) and have different levels of
spatial (e.g., county and city) and temporal (e.g., daily and monthly) aggre-
gations, more data-driven inferences can be generated during user interaction
with the interface.

7 Conclusion

In this paper, we presented an innovative web-based tool, debuted as the EPIsem-
bleVis, for conducting a comparative visual analysis on the consistency of COVID-
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19 ensemble predictions. By analyzing individual model projections as ensemble
members, the EPIsembleVis is devised to (a) quantify the consistency of the pre-
diction ensemble using metrics based on statistical aggregates, which include the
coefficient of variation in individual ensembles (the dispersion in the predictions
from different ensemble members) and the prediction error (by comparing the
model predictions against the recorded data), and (b) allows users to overview
and explore in details the spatiotemporal variability of the ensemble predic-
tions (e.g., similarities and dissimilarities of the ensemble members) at each
spatial and temporal aggregation (e.g., weekly predictions in each state across
the contiguous United States) using a suite of novel visualization techniques.
EPIsembleVis was developed based on an automated data provisioning work-
flow powered through a ElasticSearch-Kibana stack, and it can automate the
compilation of an ensemble dataset using public-available COVID-19 predic-
tions from a variety of epidemiological models in a near-real-time fashion. This
setting also makes our approach generalizable and scalable to analyze COVID-
19 predictions produced from more models and in other geographic areas (e.g.,
country and continent). The tool was developed with open-source web technolo-
gies and adaptive system designs that make the system light-weight, low-cost,
and interoperable with major online data analytical platforms, such as Kibana.

The visual analysis approach presented in this paper aims to enable heuristic
explorations of the complex patterns in COVID-19 prediction ensemble datasets
and serves as a pilot study to guide future investigative efforts through data-
driven insights, which can help epidemiologists improve the performance and
consistency of COVID-19 prediction models, as well as identifying the best
performing models for certain scenarios (e.g., geographic areas and outbreak
stages).

We summarize our experiences and findings from the approach as the fol-
lowing:

e For a comparative study, metadata visualizations, such as the data avail-
ability matrix presented in this paper, can help users identify applicable
data for comparisons.

e Our approach provides a visual workflow that aims to foster a better un-
derstanding of the ensemble data itself and its associated data operations
(e.g., data enrichment and different types of aggregations). The inter-
active workflow serves as a medium for users to interact with the data
directly to extract useful information along with all steps of the workflow.

e Data-driven insights derived through the visual analysis, such as the em-
pirical relationship between the COVID-19 prediction uncertainty and
population density, can be used to generate new hypotheses for guiding
future modeling and investigation efforts. Based on the spatiotemporal
patterns acquired from our case study, we would propose a multivariate
analysis to further quantify the relationship between the ensemble predic-
tion performance and state-level demographic characteristics.
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The visual interface was presented and well-received at the Centers for Dis-
ease Control and Prevention (CDC) headquarters. During the presentation, we
prepared a user survey for the presentation audiences to evaluate the usefulness
of our visual interface. The survey was not designed to assess the usability and
utility of the visual interface using formal protocols and cognitive walk-through
defined by the visualization and visual analytics communities. Instead, we used
the survey to collect qualitative feedback on the usefulness of the visual inter-
face and user-friendliness of the visual representation from the perspective of
healthcare professionals. Most audiences of the presentation commented posi-
tively on the usefulness of the visual interface and offered new visions and use
cases for exploring the consistency of COVID-19 model predictions. Based on
the feedback, we have identified our future work as the following: (1) applying
more advanced metrics to provide a more in-depth and comprehensive char-
acterization of each prediction ensemble’s uncertainty and error. Examples of
these metrics include the root mean squared error (RMSE) and the coefficient
of variance of the root mean square error (RMSE CV), which are often used
to evaluate the deviation of model prediction from reality. Different quantiles
of each ensemble can also be incorporated into the analysis to provide a more
detailed characterization of the variability in the individual model predictions;
(2) adapting the leaflet glyph to visualize negative values when visualization
the ensemble error through different shades of color-coding within the same
hue; (3) conducting a case study using weekly projections that are produced
at the county level across the United States. With higher spatial resolution,
the county-level evaluation on modeling performances can provide more practi-
cal insights for supporting COVID-19 mitigation strategies, and (4) developing
a heuristic data analysis using a combination of unsupervised machine learn-
ing and multivariate visualization techniques to explore potential factors (e.g.,
state, demographic, land-use/land-cover and mobility attributes) that can af-
fect the uncertainty of prediction ensemble, as well as the prediction accuracy
of individual models. We also plan to conduct a formal usability and utility
test of the visual interface by inviting professionals from both the visualization
and epidemiology communities. Ultimately, the future work aims to supplement
the existing evaluation of the ensemble prediction uncertainty and model predic-
tion accuracy, with the additional capabilities to provide a more straightforward
(semi-automated) answer questions, such as which predictive model is best for a
given scenario, and under which conditions (mitigation strategies, growth rate,
population density, total population, etc).
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