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Abstract—This article presents the design, implementation,
and use cases of the Chattanooga Digital Twin (CTwin) to-
wards the vision for next-generation smart city applications
for urban mobility management. CTwin is an end-to-end web-
based platform that incorporates various aspects of the decision-
making process for optimizing urban transportation systems in
Chattanooga, Tennessee, to reduce traffic congestion, incidents,
and vehicle fuel consumption. The platform serves as a cyberin-
frastructure to collect and integrate multi-domain urban mobility
data from various online repositories and Internet of Things
sensors, covering multiple urban aspects (e.g., traffic, natural
hazards, weather, and safety) that are relevant to urban mobility
management. The platform enables advanced capabilities for:
(a) real-time situational awareness on traffic and infrastructure
conditions on highways and urban roads, (b) cyber-physical
control for optimizing traffic signal timing, and (c) interactive
visual analytics on big urban mobility data and various metrics
for traffic prediction and transportation performance evaluation.
The platform is designed using a multi-level componentization
paradigm and is implemented using modular and adaptive archi-
tecture, rendering it as a generalizable and extendable prototype
for other urban management applications. We present several
use cases to demonstrate CTwin’s core capabilities supporting
decision-making in smart urban mobility management.

Index Terms—Traffic flow visualization, level of detail, situa-
tional awareness, traffic sensor network, urban mobility, traffic
monitoring

I. INTRODUCTION

Urban mobility management entails complex decision-
making processes that involve multiple urban management as-
pects and require advanced capabilities for real-time collection
and analysis of urban big data [1, 2]. Taking advantage of
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advanced information and communication technologies, many
recent studies strive to create smart mobility management
paradigms and next-generation intelligent transportation sys-
tems by building smart city applications [3, 4, 5]. Emerging
digital twin technology can provide unique advantages for
handling large volumes and varieties of urban data to facilitate
complex predictive analytics [6, 7]. They leverage advanced
computing and communication technologies to enable digiti-
zation and real-time control of complex real-world physical
objects, systems, and processes [8, 9, 10]. Originally, the
digital twin concept was proposed to promote smart anufac-
turing [9], and has been recently applied by a few studies to
replicate cities for enhancing urban management [11]. With
the increasing availability of urban big data and the advent
of the Internet of Things (IoT), Artificial Intelligence (AI),
and cloud computing, digital twin cities enable unique urban
informatics capabilities. These capabilities can inform past
and present operation of multiple urban sub-systems (e.g.,
buildings, transportation, water, and energy) and project the
future trend of a urban system from many management aspects
[12, 13].

A digital twin city serves as a virtual model of a smart city
and is continuously updated through predictive analysis and
informed simulation, which are powered by physical-based
models and machine learners, to mirror the real-world urban
dynamics as it changes. The approach can also create a low-
cost virtual environment to simulate a city’s behavior and
responses to hypothetical urban management conditions (e.g.,
strategic urban planning, and disaster response management),
generating practical insights to support decision making and
the optimization of the physical world. Early visions of digital
twins for smart and sustainable cities started with the smart
city plans of 15 major cities worldwide [14] and New York’s
strategy for building “the world’s most digital city” [15].
Many urban management authorities proposed their vision and
plans for digitizing cities to enhance livability and data-driven
urban management [16, 17, 18]. Since then, a few research
groups in the urban science sector started to translate cities
into digital twin representations [11] for a variety of research
and prototyping purposes, such as supporting the knowledge
discovery of urban data [19], developing intelligent transport
systems, and creating smart mobility management strategies
[20, 21, 22], facilitating building and infrastructure manage-
ment [23], and promoting citizen science through volunteered
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geographic information and crowd-sourcing [21, 24, 22].
Despite the great significance and usefulness of these ef-

forts, past digital twin applications rarely focused on optimiz-
ing urban mobility from a holistic approach which considers
urban sub-systems that can influence (e.g., weather, road haz-
ards, traffic incidents) or be affected (e.g., energy consumption
and vehicle emissions) by urban mobility. Although some
digital twin prototypes [21] can execute static urban mobility
simulation and visualize traffic flows and 3D building envi-
ronments in townships, they do not enable any optimization
of the real-world transportation systems through automated
pipelines. Nor do they connect other urban aspects with mo-
bility management. Therefore, they have limited scalability for
supporting urban mobility management in large urban areas.
In this regard, there is a need to develop a real-time digital
twin, which can: (a) enable the situational awareness of urban
mobility systems, (b) conduct informed simulation using real-
world traffic data in real-time, and (c) optimize transportation
systems through a cyber-physical control strategy powered
with automated communication pipelines.

This paper follows the vision and methodological aspects
of creating a generalized digital twin for urban mobility
management and presents a case study for Chattanooga in
Tennessee with the Chattanooga Digital Twin (CTwin). CTwin
is designed based on a list of desired features and principles
[25, 26, 27] for managing urban mobility in the vision of
developing smart and sustainable cities. From the urban sci-
ence perspective, CTwin enables effective and innovative smart
mobility management paradigms by providing the following
features:

1) real-time situational awareness of the urban transporta-
tion system [28].

2) informed traffic simulation models and mobile energy
metrics for traffic prediction and vehicle speed controls
[29, 30].

3) cyber-physical control for optimizing traffic signal tim-
ings [25], and

4) interactive visual analytics dashboards on big urban
mobility data [27].

The urban mobility data analyzed in the digital twin are
collected and integrated from a wide variety of IoT sensors
and online repositories, covering multiple urban sectors (e.g.,
traffic, natural hazards, weather, and safety) that are important
to mobility management. From the informatics perspective,
CTwin adopts state-of-art software design conventions (design
and architecture patterns) and open-source web technologies,
rendering it adaptive, generalizable, and maintainable. We
adopted a multi-level componentization strategy during the de-
velopment to increase its modularity and its code components’
reusability, rendering CTwin more flexible and maintainable.

We share our experiences and practices for lowering com-
mon software engineering barriers to develop comprehensive
and robust digital twin applications. We aim to help would-
be-developers, who are often domain experts with a moderate
level of coding experience, by presenting the design strategy
and software stacks of CTwin platform as a generalized
cyberinfrastructure, which provides a software foundation for

building modular digital twin city applications for various
urban research, planning, and management purposes.

II. BACKGROUND AND MOTIVATION

CTwin is developed as a core component of the U.S. De-
partment of Energy’s “Real-Time Data and Simulation for Op-
timizing Regional Mobility in the United States” project [31]
and serves as critical information technology infrastructure to
mirror the traffic patterns and reduce mobility-related energy
use in the metropolitan area of Chattanooga, Tennessee. This
paper intends to share the software engineering design and
practices, and open-source software suite for creating CTwin
with the urban informatics and management communities. We
aim to lower both the methodological and technical barriers to
the development of smart city applications for urban mobility
management.

A. Smart Mobility Management Paradigm through CTwin

At the methodological level, the digital twin is designed
to offer a novel and automated paradigm for optimizing urban
transportation systems and improving fuel efficiency. Different
from a conventional transportation information system or data
platform, our digital twin is developed based on the cyber-
physical integration concept [10]. The novelty of our digital
twin paradigm is its capability to enable a bidirectional cyber-
physical connection that creates a digital replica of a physical
transportation system in a virtual space in order to simulate its
dynamics and behaviors in the real world and provide real-time
feedback. Meanwhile, the digital replica can also interact with
and alter the physical system through cyber-physical control
[32]. In addition to a conventional information system’s data
management capability, our digital twin is designed to control
IoT-connected transportation infrastructure (e.g., traffic signal
controllers) using optimized simulation outputs to reduce
traffic congestion in the physical world.

Our overall methodological workflow is illustrated in Figure
1. Core features of CTwin include: (1) situational awareness,
(2) real-time simulation and metrics, (3) cyber-physical con-
trols, and (4) visual analytics dashboards.

The situational awareness capability is fundamental for
other digital twin functionalities. CTwin connects a network
of diverse IoT sensors, transportation infrastructure, and third-
party data services to discover and assemble large volumes
and varieties of urban mobility-related data (e.g., traffic and
infrastructure conditions, weather, hazards, traffic incidents) in
real-time and near-real-time. With an integrated urban dataset,
CTwin can enable the situational awareness from a holistic
perspective by creating the foundation for further optimiza-
tion through the analysis of traffic volume, speed, and lane
occupancy on highways and major urban roads, and vehicle
queue length at intersections along major traffic corridors.

The information that characterizes urban mobility dynam-
ics is then fed into CTwin’s computing environment, where
advanced simulation models and urban science metrics are
deployed, to produce analyses and optimized strategies for
mitigating traffic congestion. The computing environment is
deployed on a cloud powered with the capability to handle a
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Fig. 1: A smart mobility management paradigm enabled through CTwin’s workflow: from virtual to reality.

large amount of urban data. Through simulations and several
metrics, CTwin is able to construct lane-based continuous
traffic flow using discrete road-side sensors [26], execute a
signal-control algorithm in real-time [25, 33], and evaluate
the performance of transportation systems.

Outputs from simulations and metrics are employed to
change the traffic dynamics in the real physical world. Taking
advantage of the state-of-art edge computing technologies,
CTwin offers unique cyber-physical capability to establish
two-way connections between IoT-enabled transportation in-
frastructure (e.g., traffic cameras and traffic signal controls
at intersections) with a signal timing control algorithm to
optimize traffic in corridors and on highways in Chattanooga.
This feature aims to reduce traffic congestion and its associated
energy consumption in Chattanooga by 20%.

B. Digital Twin as a Cyberinfrastructure

Developing smart mobility features at the regional scale
requires labor-intensive and time-consuming efforts. These
efforts include collecting multi-domain data, simulating traffic
dynamics in real-time for situational awareness and future
projection of the transportation systems, optimizing traffic con-
trols for improving intersectional traffic, and supporting urban
planners to make informed decisions. Technical challenges
associated with developing smart mobility features include
collecting and processing big mobility data and integrating dif-
ferent research applications (e.g., simulations, cyber-physical
systems, metrics for decision support, and multi-domain urban
data) into a comprehensive and automated workflow to support
time-critical mobility management applications. To address
these challenges, we adopted a cyberinfrastructure approach
to building an online research and computing environment for
enabling an automated pipeline toward smart mobility features.

In this setting, CTwin is developed as a generalized cy-
berinfrastructure to assemble and couple individual research
applications into a centralized web-based medium to allow

integrated usage of these applications as a decision support
workflow for mobility management. At the technical level,
the cyberinfrastructure aims to facilitate data acquisition, data
sharing, communications, multi-domain models and metrics
coupling, and collaborative urban mobility management be-
tween different planning agencies (e.g., federal, state, and
city). It promotes automated machine-to-machine data inte-
gration, centralized access to large-scale mobility data and
traffic simulation results, and provides a technical framework
to integrate various visualizations and dashboards to gener-
ate data-driven insights on intersection performance, vehicle
energy efficiency, and traffic incident hot spots, etc.

The target users of CTwin include transportation planners,
urban scientists, and decision-makers. Its design and features
are optimized to match the background and interests of the
target users. They should align with its core capability for en-
abling the holistic situational awareness of urban transportation
and allow valuable insights through simulations, metrics, and
visual analytics to inform decisions at different urban scales
(e.g., regional and corridor) and from various urban mobility
aspects (e.g., traffic safety, energy consumption, and weather).
To achieve these overall objectives, we have developed the
following features:

• Landing page: this first view provides various data visu-
alizations and summary statics to give users an overview
of traffic conditions and incidents in the entire region.

• Region: a dedicated geospatial data viewer provides re-
gional insights to the user via a large map. It allows users
to query and access a wide variety of urban mobility data,
map layers, and simulation outputs at the regional scale.
Real-time and historic traffic information measured from
roadside sensors can be visualized in this viewer.

• Corridor: a group of visual dashboards present real-time
traffic dynamics at different connected signal-controlled
intersections along major traffic corridors in Chattanooga.
This app integrates traffic camera feeds and signal per-
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formance metrics.
• Incidents: this dashboard aims to inform users on the

current and past traffic incidents, contributing factors, hot
spots, and impacts on the transportation system.

• Metrics: this smarty city app provides an evaluation of the
transportation system’s performance at the regional scale
through metrics, such as the Moving Ahead for Progress
in the 21st Century Act (MAP-21)’s system performance
and energy metrics, traffic safety metrics, and Mobility-
Energy-Productivity (MEP) [34].

These platform features are developed either as a smart
city app to deliver a specific core capability (e.g., help a
user explore intersection performance at the corridor scale),
or as a component of a more comprehensive decision support
workflow (i.e., a user flow) to provide users with more
comprehensive insights. We will further elaborate on these
workflows in Section IV-D.

C. Design Requirements

Embedding multiple big data-driven features in a single
cyberinfrastructure is a sophisticated endeavor, which requires
our CTwin to fulfil the following technical capabilities and
design requirements:

1) Data interoperability: the digital twin should comply
with commonly accepted communication protocols and
open data standards to ingest unstructured multi-domain
datasets and connect with a variety of IoT-enabled
sensors and transportation infrastructure.

2) System interoperability: it should adopt industry stan-
dards and conventions on system design to ensure its
modularity and to enable interfacing with other smart
city and mobility applications (e.g., digital twins, web
apps, and domain-models).

3) Big-data analytics and simulation capability: the digital
twin should be deployable on a distributed computing
and storage facility to ensure its capability to analyze the
large volume, velocity, and variety of time-critical urban
mobility data and to run predictive simulation models.

4) Real-time situational awareness and cyber-physical con-
trol: the digital twin should mirror the city’s traffic
conditions and patterns, identify optimized traffic con-
trol strategies through data-informed simulations, and
automatically integrate the strategy into traffic control
to reduce real-world traffic congestion.

5) Adaptive user flow design: it should offer intuitive
user interfaces, user experience design, and user flows
for different user groups (e.g., public, urban science
researchers, and traffic engineers).

6) Extendibility and maintainability: individual features
and functionalities of the digital twin should be devel-
oped using open-source web technologies to minimize
its development and maintenance cost, and should be
free of charge for academic use. It should employ
transferable and sustainable web technologies, which
comply with the major industrial conventions to facilitate
adoption long-term maintenance, and feature extension.

7) Privacy protection: the digital twin should comply
with federally mandated cybersecurity requirements, as
well as specific data protection requirements by data
providers. As such, the system must require user ac-
counts for individuals who have signed the appropri-
ate Non-Disclosure Agreements (NDA). Its Application
Programming Interface (API) endpoints for external
applications must be protected by API keys.

The development of CTwin follows industry standards for
responsive web design to render its web application correctly
on a wide range of devices with different screen sizes, reso-
lutions, and technical capabilities. Currently, access to CTwin
is only granted to authorized users. The platform access and
usage require VPN and API keys to protect data under NDA
and critical transportation infrastructure under the platform’s
cyber-physical control.

D. Data Sources

Our platform integrates various urban mobility-related
datasets generated in the Chattanooga metropolitan area us-
ing data warehousing methods. These datasets include: (a)
real-time, near-real-time, and historic traffic conditions and
safety data from sensors, cameras, public entities, and crowd-
sourcing platforms [35], (b) real-time traffic control data from
TACTICS signal management and control system and Dy-
namic Message Signs (DMS), (c) real-time and near-real-time
information on the weather conditions and hazard warnings
(earthquake and wildfires) in the region, (d) performance
measures that describe the performance and energy efficiency
of the transportation system, and (e) static geospatial data
layers that describe the socioeconomic aspects of the city, such
as critical urban infrastructure, census data, administrative
boundaries (e.g., city, county, and metropolitan area).

In CTwin, traffic condition data is collected from various
types of sensors that include Radar Detection Sensors (RDS)
and Closed-Circuit Television (CCTV) cameras. RDS sensors
are operated by the Tennessee Department of Transportation
(TDOT) and provide lane-specific traffic conditions that in-
clude volume counts, average speeds, and occupancy at 30-
second intervals [36]. Primary sources for CCTV camera
data include GridSmart and TDOT’s SmartWay system. The
GridSmart system is a network of commercial fish-eye cameras
deployed at individual intersections to capture and process
vehicle movements in real-time [37]. The TDOT’s SmartWay
system includes traffic cameras and dynamic message signs
across Highways in Tennessee. The system monitors freeways
across multiple Tennessee urban areas, including Knoxville,
Nashville, and Chattanooga [38]. CTwin uses traffic safety
data provided by the TDOT through the Enhanced Tennessee
Roadway Information Management System (E-TRIMS) and
public sources, such as Waze [27]. Traffic control data, such as
the signal timing and DMS information, are retrieved through
TACTICS signal management [39] and TDOT’s SmartWay
system [38].

Weather and hazard information is collected from web
services provided by the U.S. Geological Survey (USGS) and
National Oceanic and Atmospheric Administration (NOAA).
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In addition, the platform also incorporates advanced traffic
simulation results, system performance evaluation, and traffic
energy metrics as individual smart city apps to provide data-
and model-driven insights and forecasting of traffic conditions
and traffic-related fuel consumption through multiple simula-
tion scenarios. The performance measures are retrieved from
the MAP-21’s system performance and energy metrics [40],
and National Renewable Energy Laboratory’s MEP tool [34].

Figure 2 presents core features and data resources in CTwin
and their temporal coverage in the timeline.

Fig. 2: Temporal range of CTwin features and dynamic data
layers.

III. SYSTEM DESIGN

This section presents the conceptual design of CTwin’s fea-
tures and workflows, and the technical implementation of its
cyberinfrastructure. CTwin is a comprehensive web platform
that follows a horizontal approach for developing smart city
applications. It aims to integrate individual smart city apps
and software components, which address a specific sector of
urban mobility (e.g., weather, infrastructure, safety, and en-
ergy), into a more holistic urban management workflow. This
workflow connects different urban mobility aspects to help
users generate useful insights between different urban sub-
systems (e.g., traffic infrastructure performance and energy
consumption). CTwin needs to assemble multiple software
components (i.e., individual smart city apps) and connect
them into logical urban management workflow as user flows.
To address the complexity in the cyberinfrastructure design
and development, we propose a multi-level component-based
paradigm that combines software engineering practices with
urban science domain knowledge to facilitate the conceptual
design and technical implementation of CTwin.

A. Conceptual Design: Multi-level Componentization

The conceptual design of CTwin includes the design of
its core capabilities, user features and their interconnected
logic, and user flow. The multi-level componentization strategy
proposed in this paper is created to compensate for the
standard C4 model (context, containers, components, and
code) to incorporate the domain aspect in the user flow and
architectural design of a research software tool. Our modified
C4-model (as illustrated in Figure 3) offers a conceptual
workflow to facilitate the software design.

The workflow starts with the definition of the research
objectives, such as exploring the empirical relationships be-
tween traffic volume and energy consumption, enabling real-
time situational awareness of traffic conditions, and evaluat-
ing traffic signal performance along corridors. The workflow
breaks different research goals into user flows that are spe-
cific to different types of target users (e.g., researchers and
traffic engineers), and which are defined based on typical
tasks these users perform (e.g., select date and spatial scale,
visually compare and correlate variables). We translate these
user flows into entities that are specific to the urban science
or urban mobility domains. These domain-specific entities
include sensors, datasets, analytical pipelines, and simulation
models. For example, the user flow for enabling situational
awareness of highway traffic dynamics requires the integration
of the highway road network with lane information, traffic
speed and volume data, an agent-based model for emulating
continuous traffic flow along the highway, live camera feeds,
and traffic incident data.

To guide the platform’s technical implementation, our pro-
posed paradigm helps domain scientists and software devel-
opers translate different domain entities into code, addressing
the common “model-to-code gap” in urban science software
development. Our approach defines three levels of important
building blocks: user feature, app, and user flow. A user feature
is an atomic and basic element that focuses on enabling a
single-objective function (e.g., select date) and user experience
(e.g., a visualization of requested simulation outputs. One
or multiple user features can be conceptually and logically
synchronized to attain a more comprehensive user experience.
The synchronization results in a smart city/mobility app.

B. Implementation: Cloud-based Architecture and Software

Guided by the multi-level componentization paradigm, we
implemented the platform using the classical multi-tier server-
client architecture presented in Figure 4. As CTwin cyberin-
frastructure entails many hierarchical components, we choose
appropriate software engineering practices to ensure its mod-
ularity and interoperability.

We employ a microservice architecture on the system’s
server to accommodate our conceptual design strategy. This
practice ensures interoperability with other IoT services and
data, as well as the system’s adaptability and scalability to new
datasets, regions, user groups, and management objectives. It
allows developers to create a fully independent information
system, situational awareness tools, and visual dashboards
using adaptive Application Programming Interfaces (APIs)
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Fig. 3: Multi-level component-based design for improving system modularity and reusability.

Fig. 4: Multi-tier system architecture of CTwin platform.

to support features and user flows on the client-side. We
used the Angular framework to develop the client-side ap-
plication. Angular is a TypeScript-based open-source web
application framework that employs the Model-–View-–View
Model (MVVM) design pattern [41]. The MVVM design
pattern aligns with our multi-level componentization paradigm.
It provides a flexible technical structure to host individual
smart city apps and integrate them into user flows. The pattern
provides a robust yet flexible web development practice to
organize multiple app features into a single-page application.

The CTwin platform adopts free and open-source li-
braries/software suites, which are proven to be deployable
and interoperable with many industrial applications. Individual
technologies are summarized in Table I. In our architecture,
we defined several software building blocks based on required
functions for our platform, such as data storage, web map-

TABLE I: Software packages

Package Name Descriptions
Angular TypeScript-based web application

framework
Java Spring Back-end web application framework
Docker Container platform for packaging soft-

ware
Kubernetes Orchestration system
PostgreSQL and Post-
GIS

Relational database with geospatial ex-
tensions

GeoServer Java-based server written in Java that
allows users to share, process, and edit
geospatial data

ping, geoprocessing, visualization, and graphical user interface
generation. One or more software packages and libraries are
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selected to fulfill the functional roles of each building block.
For example, we chose GeoServer for our web mapping
building block. It enables many geospatial features, such as
web map services, web feature services, web tile services,
and online geo-processing services. Individual building blocks
have well-defined data standards, input and output formats. As
they are connected through a microservices architecture, any
chosen software packages can be readily replaced by other
packages and technologies to incorporate new features and
improve performance for specific research needs. For example,
the GeoServer could be swapped with CartoDB or ArcGIS
servers. This flexibility is enabled through our multi-level
componentization strategy and Docker containerization.

The CTwin platform is hosted in a cloud environment
managed by ORNL. The edge-computing paradigm adopted by
our platform follows the vision of Cloud of Things (CoT) that
promotes the integration of various IoT devices and sensors
as distributed resources for data processing and management.

C. Data Access Through APIs

Databases are excellent storage for large amounts of data.
To better manage these data and improve access speeds, we
store the original data alongside their aggregates for commonly
requested time intervals (i.e., 1 minute, 5 minutes, 15 minutes,
1 hour, and 1 day) and other aspects (e.g., traffic by travel
direction, and turn movements). Furthermore, we store deriva-
tive data (e.g., fuel use and energy consumption) separately.
This speeds up data access, and provides a smoother user
experience while exploring the data through CTwin.

For easier access to the data, we developed data services
for several of the most relevant datasets, including RDS,
GridSmart, and incident data. These services enable us to use
URL-based queries to specify type of data, date and time
ranges, and level of aggregation required for a given task.
Within CTwin, these services are used to provide data for the
user interface in a format that is optimized for the use in charts
or other visualizations. The date and time ranges are chosen by
the user through the date selector in the user interface, while
aggregates are determined by the type of chart.

In addition to this internal use, the data services can also
serve data to users and components outside the CTwin’s
infrastructure through the use of API keys, which serve
as a convenient alternative to authentication with username
and password. This enables project members to perform re-
search and develop prototypes for new features on their own
machines, without interfering with CTwin’s functionality. It
also mitigates integration concerns as it is easy to test new
functionality without fully integrating changes on the server.

IV. USE CASE DEMONSTRATION AND DISCUSSION

CTwin serves as a generalized cloud-based cyberinfrastruc-
ture to integrate individual smart city applications into a holis-
tic urban mobility management and decision-support work-
flow. Many of these smart city applications are published as
independent studies and incorporated into CTwin to enable the
platform’s core capabilities for real-time situational awareness
of the urban transportation system [26], informed simulations

and metrics [34], traffic control optimization [30, 25], cyber-
physical controls [42], and visual analytics for exploring multi-
scale traffic dynamics [27, 43].

A. Situational Awareness

We demonstrate CTwin’s situational awareness capability
at multiple spatial scales through three selected cases. Two
cases present urban mobility patterns at the regional scale, as
depicted in Figure 5. These two cases are demonstrated using
the “region page” of CTwin, which offers an interactive web
map with options for showing many data layers related to
urban mobility near Chattanooga. Examples include traffic in-
frastructure locations (e.g., interstates, U.S and state highways,
county roads, ramps, traffic signals, and DMS), civil infrastruc-
ture locations (e.g., fire stations, law enforcement, hospitals,
and schools), traffic sensor locations (e.g., CCTV cameras,
GridSmart cameras, and radar detection sensors) weather and
natural hazards (e.g., precipitation, wildfire, and earthquake),
and demographic attributes (population). CTwin functions as
an adaptive big-data cyberinfrastructure to assemble these
datasets and provides centralized access and visualizations to
allow users to explore them. The spatial coverage of these
two use cases includes four major highways in the vicinity of
Chattanooga: I-75, I-24, US-27, and US-153.

The first case demonstrates CTwin’s capability to mirror
continuous emulation of highway traffic flows in near-real-time
[26]. This feature is enabled through an agent-based traffic
emulator and RDS sensors. Figure 5a demonstrates an ani-
mated Kernel Density map to visualize the traffic density at the
regional scale. RDS measurements are displayed at individual
sensor locations using color-coded circle symbols. Users can
zoom in on the map to view animated vehicle movements
along the highway at the lane level, where color-coded dots
are employed to represent individual vehicles and their driving
speeds. The CTwin platform offers an effective online comput-
ing environment to host the emulator and connect it with 214
IoT-connected RDS sensors on interstate and state highways
near Chattanooga through an automated data pipeline. Relying
on CTwin’s data acquisition and management capability, the
traffic emulation can be readily expanded to highways in
Tennessee’s three other urban areas (e.g., Knoxville, Nashville,
and Memphis) in Tennessee that are equipped with the same
type of RDS sensors.

The second case is developed to monitor and analyze the
occurrence of traffic incidents along the highway using real-
time and historic emergency response data and CCTV camera
feeds. Through an adaptive map view, users can identify the lo-
cations and hotpots of current and past traffic incidents. CTwin
provides a user-friendly interface and visualizations that can
display a large number of traffic incidents on a web map
through cluster markers (as shown in Figure 5b). Furthermore,
users can access the real-time camera feeds via the CCTV
layer to monitor current traffic conditions on the highway.
Users can retrieve time-critical information regarding traffic
incidents and congestion details in real-time. These details
reflect the traffic dynamics (e.g., how other vehicles respond
and the change in driving behaviors) near the occurrences of
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Fig. 5: The demonstration of CTwin’s situational awareness capability through selected cases at the regional scale: (a) the
construction of continuous traffic flow using near-real-time traffic sensor measurements and an agent-based simulation model,
(b) traffic incident alerts through real-time incident data and CCTV cameras.

the incident. In this case study, there are 114 CCTV cameras
near highways near Chattanooga, and 554 cameras throughout
Tennessee which could contribute to incident monitoring in
other urban areas.

B. Cyber-Physical Control

Typically, urban mobility systems rely on preset traffic
signal timing plans which use estimates of typical traffic
for different times of day (e.g. morning peak and afternoon
peak) and days of the week. Unlike these systems, CTwin
enables a cyber-physical control mechanism that can respond
to traffic scenarios in real-time by simulating corridor-level
traffic dynamics based on the real-time traffic data provided
by CTwin to identify optimized traffic timing plans, and send
them back to the real-world signal controllers to change the
physical world (as illustrated in Figure 6). CTwin uses the
National Transportation Communications for Intelligent Trans-
portation Systems Protocol (NTCIP) to ensure compatibility
with the majority of signal controllers deployed across the
United States. To complement the control mechanism, CTwin
also provides a series of data visualizations to inform users
on the most updated state (e.g., traffic volume and speed),

operating condition, and performance of individual signalized
intersections within a traffic corridor (as depicted by the blue
boundary in Figure 6).

We take advantage of CTwin’s cyberinfrastructure to con-
duct a cyber-physical control experiment within the Shallow-
ford Road traffic corridor in Chattanooga (as depicted by
the green boundary on the map in Figure 6). The control
experiment is designed to establish two-way communication
between the traffic controls, such as traffic light controllers
and traffic camera observations (measuring traffic conditions),
and signal timing optimization algorithms deployed in a cloud
environment. The optimization algorithms take the real-time
traffic condition information (e.g., vehicle counts, speeds, and
turn movements) and identify the best signal timing plan for
each signal along the corridor in real-time. The optimized
signal timing plan is returned back to the signal controller in
response to the current traffic scenario captured by CTwin’s
situational awareness capabilities. Details of the real-time
control algorithms are elaborated in [42] and [33].

Typically, urban mobility systems rely on preset traffic
signal timing plans which use estimates of typical traffic for
different times of day (e.g. morning peak and afternoon peak)
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Fig. 6: Cyber-physical control experiments conducted through the CTwin’s cyberinfrastructure: Connecting traffic light controller
at intersections with signal timing optimization algorithms.

and days of the week. Unlike these systems, CTwin enables a
cyber-physical system that can respond to traffic scenarios in
real time by simulating intersection-level traffic dynamics in
a virtual computing environment to identify optimized traffic
timing plans, and send them back to the real-world signal
controllers to change the physical world. Our approach follows
the National Transportation Communications for Intelligent
Transportation Systems Protocol (NTCIP) to ensure CTwin’s
compatibility with the majority of signal controllers deployed
across the United States. The same practice could be applied
to other traffic controls and infrastructure, such as the dynamic
messaging displays that are deployed on roadways, to inform
drivers on traffic conditions, incidents, road hazards, as well
as to reroute traffic.

This paper highlights CTwin’s merit as a cyberinfrastructure
to mirror the traffic dynamics by retrieving traffic information
through IoT connections and hosting the control algorithms
in a digital twin environment. It enables researchers and
practitioners to conduct predictive analysis to optimize signal
timing. The effort aims to improve traffic signal efficiency to
reduce congestion, as has been tested through a SUMO (Sim-
ulation of Urban MObility)-based traffic simulation conducted
during a control experiment in the Shallowford Road corridor
to reduce 18% of vehicle energy consumption [44].

C. Metrics and Visual Analytics for Decision Support

In addition to situational awareness of urban mobility sys-
tems through visualizing traffic sensor observations, CTwin
also provides advanced decision support capabilities. The
platform integrates metrics for road and traffic infrasturcture
performance, traffic safetys, and energy efficiency. Intuitive
and interactive visual analytics dashboards allow users to
explore the vast variety of data and metrics that characterize
different aspects of the urban mobility system in Chattanooga.
Useful insights regarding the multiscale traffic dynamics and
traffic safety are derived through these visual analytics dash-
boards and are detailed in [27] and [43].

The critical contribution of CTwin in supporting informed
decisions is to facilitate the dissemination of useful insights
through various urban mobility data, metrics, and simulation
outputs, as well as the collaborative inter-agency urban plan-
ning through easy-to-access visual analytics interfaces. This
cyberinfrastructure serves as a foundation to create a multi-
sector smart city platform that utilizes the horizontal approach
to integrate individual smart city applications into a centralized
platform. Through such a platform, users can collectively use
different smart city apps to derive more holistic insights that
rely on multiple aspects (e.g., energy and traffic safety) of
urban mobility management.
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D. Decision Workflow for a Use Case

This section presents a decision workflow for mitigating
a traffic congestion scenario based on the level of detail
principle. Other workflows can be devised to support decisions
for reducing traffic incidents and road hazards.

• Step 1 - Daily Overview: Users start with the “landing
page”. CTwin provides the user an overview the traffic
conditions and traffic incidents at the regional scale within
a defined interval of time. The landing page provides
summaries of traffic volume and speeds, traffic incidents,
and weather conditions at the regional level to give the
user an overall idea of the transportation system condition
in Chattanooga. Through the graphical interface, users
can explore the performance and conditions of the trans-
portation system for the current day and historically. This
high-level overview helps users get the general idea of the
temporal variability in mobility-related data to select the
date of interest.

• Step 2 - Regional Insights: Users identify a date with
unique overall traffic patterns, such as dates with abnor-
mal traffic volume or special events (e.g., holidays and
the introduction of COVID-19 travel bans). Users can
then switch to the “region page” to explore the urban
infrastructure and contributing factors (e.g., incidents,
weather, and population distribution) that may affect the
mobility patterns and cause traffic congestion. Following
the previous example, users can activate the traffic flow
emulator and the NOAA weather radar layer to explore in
detail how traffic flow dynamics and vehicle movements
vary in response to precipitation. The region page helps
users get a more detailed view of traffic and environmen-
tal conditions on a selected date of interest. Following
the same example, users can identify traffic corridors of
interest (e.g., areas with high traffic volume or which are
affected by special weather) through the region view.

• Step 3 - Corridor Insights: Users switch to the “corridor
page” to examine the traffic corridor or signalized inter-
sections that have been identified through the previous
step. Through a group of visual dashboards, users can
explore traffic dynamics at different signal-controlled
intersections that are connected within a selected corridor.
They can examine mobility patterns for the corridor and
individual intersections through real-time traffic camera
feeds and charts which summarize turn movements and
other signal performance metrics. This helps them to
identify traffic bottlenecks (signal phases and lane con-
figurations that can be improved) which they need to
understand to mitigate congestion.

• Step 4 - Metrics: After understanding the multi-scale
traffic dynamics through previous steps, users switch to
the “metrics page” to explore how the measures of traffic
safety, energy consumption, and road performance change
in response to urban mobility patterns. The visualization
of MAP-21 system performance and energy metrics can
guide the users back to the region page or corridor page
to explore the potential causes through CCTV camera
feeds, and summary statistics for intersection traffic.

V. CONCLUSION

This paper illustrates the implementation of a smart city
digital twin at the example of CTwin, an urban mobility man-
agement in Chattanooga, which considers mobility-reladed
aspects across different scales. Our urban informatics approach
maintains a holistic and automated approach to integrate and
analyze urban big data, and reduce traffic congestion and
excessive fuel consumption in urban areas. The design and
development of our comprehensive smart city platform, can
integrate individual smart city apps into complex workflows
to support decision-making for urban mobility management.

As a cyberinfrastructure that makes urban big data and
its analytics easily accessible, our platform enables advanced
capabilities which include real-time situational awareness of
traffic and infrastructure conditions, cyber-physical control to
optimize traffic signal timings, and interactive visual analytics
of big urban mobility data with various metrics for traffic
prediction and transportation performance evaluation. The
intuitive and user-friendly interface allow users to prepare
a systematic plan for smart mobility monitoring and offer
means for quantitative assessment of the transportation system
performance through informed simulation and metrics.

The platform can be accessed anytime from anywhere
through the internet and thus such can be updated as informa-
tion is produced, allowing for a central repository and access
that can inform users about the the state of the transportation
system. CTwin is developed in a flexible and extendable struc-
ture to address similar urban mobility management concerns
at the national level. The platform is designed using multi-
level computation and built with open-source technologies that
make the system adaptive and generalizable.
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